

A Set of 200 Automatically Generated Cyclic Polygon Angle Problems

Philip Todd

philt@saltire.com

A random selection of automatically generated problems involving cyclic hexagons, heptagons and octagons is presented. The hexagon problems relate four, rather than three angles. Each problem can take one of three forms. In one form, certain angles are specified numerically, and the numeric value of an unknown angle is required. In a second form, unknown angles are specified as indeterminates, and the unknown angle is required in terms of these indeterminates. The third form states a theorem relating the angles and requires a proof.

The problems are presented in approximate order of difficulty, as measured by the complexity of the machine generated human-readable proofs.

An introduction describes techniques which can be used in the solution of the problems. Answers for the non-proof problems are given, and step by step solutions, or proofs for odd numbered problems.

Introduction

Here is a set of geometry puzzles. In addition to the angles of a triangle adding up to 180 degrees, you'll need to use the facts that opposite angles of a cyclic quadrilateral add up to 180 degrees and that two angles at the circumference which sit on the same chord are equal.

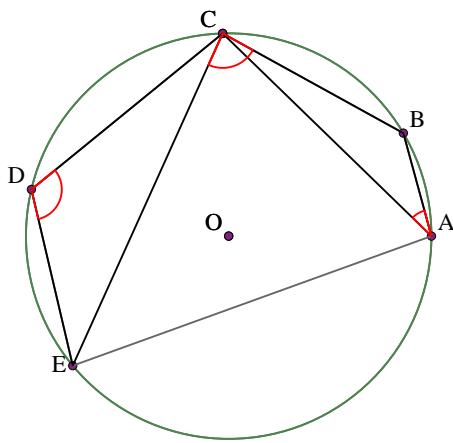


Fig.1: $BAC=x$, $BCE=y$, $CDE=z$

For example, in Fig. 1, $ACDE$ is a cyclic quadrilateral, hence angles $CAE=180-z$. But $ABCE$ is also a cyclic quadrilateral, hence $BCE+BAE=180$. As $BAE=BAC+CAE$, we have $x+y+z=180$.

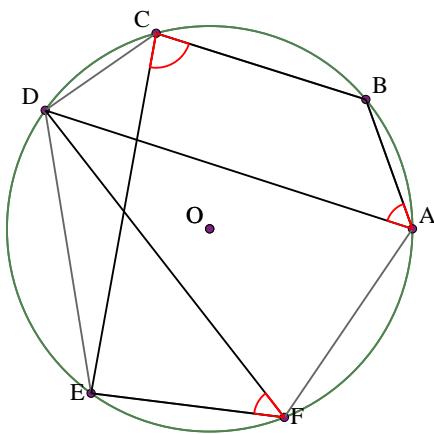


Fig.2: $DFE=x$, $BCE=y$, $BAD=z$

In Fig. 2, DFE and DCE both stand on the chord DE , and hence have the same value. So $DCE=x$. Hence $DCB=x+y$. But $DCBA$ is a cyclic quadrilateral so $x+y+z=180$.

For problems which contain lines through the circle center, you may need the additional result that the angle on a chord at the center of the circle is twice the angle on that chord at the circumference.

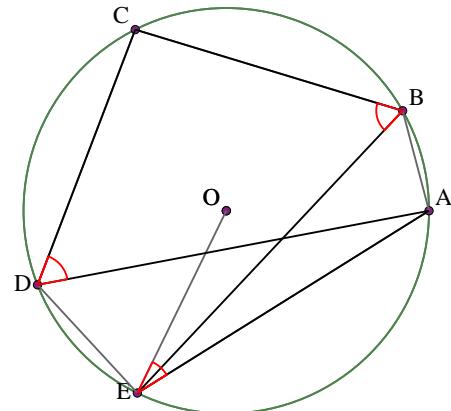
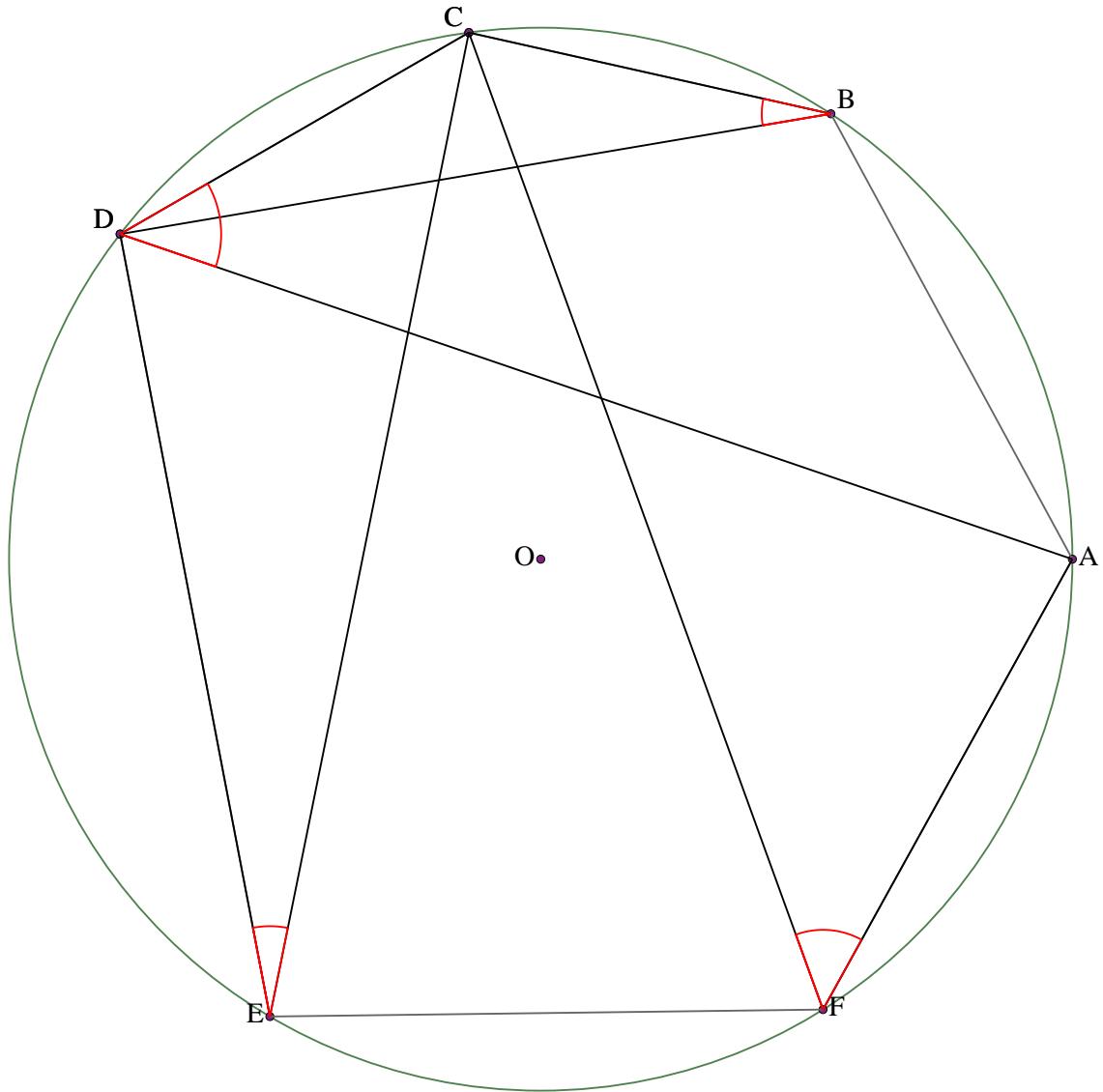


Fig.3: $OEA=x$, $ADC=y$, $CBE=z$

In Fig. 3, if angle OEA is x , then so is angle OAE , as the triangle is isosceles. So angle $AOE = 180-2x$. Hence $ADE=90-x$. If $ADE=y$, then $CDE=90-x+y$. But $BCDE$ is a cyclic quadrilateral, so $CDE+CBE=180$. If $CBE=z$, then we have $90-x+y+z=180$, or $y+z=x+90$.

Example 1

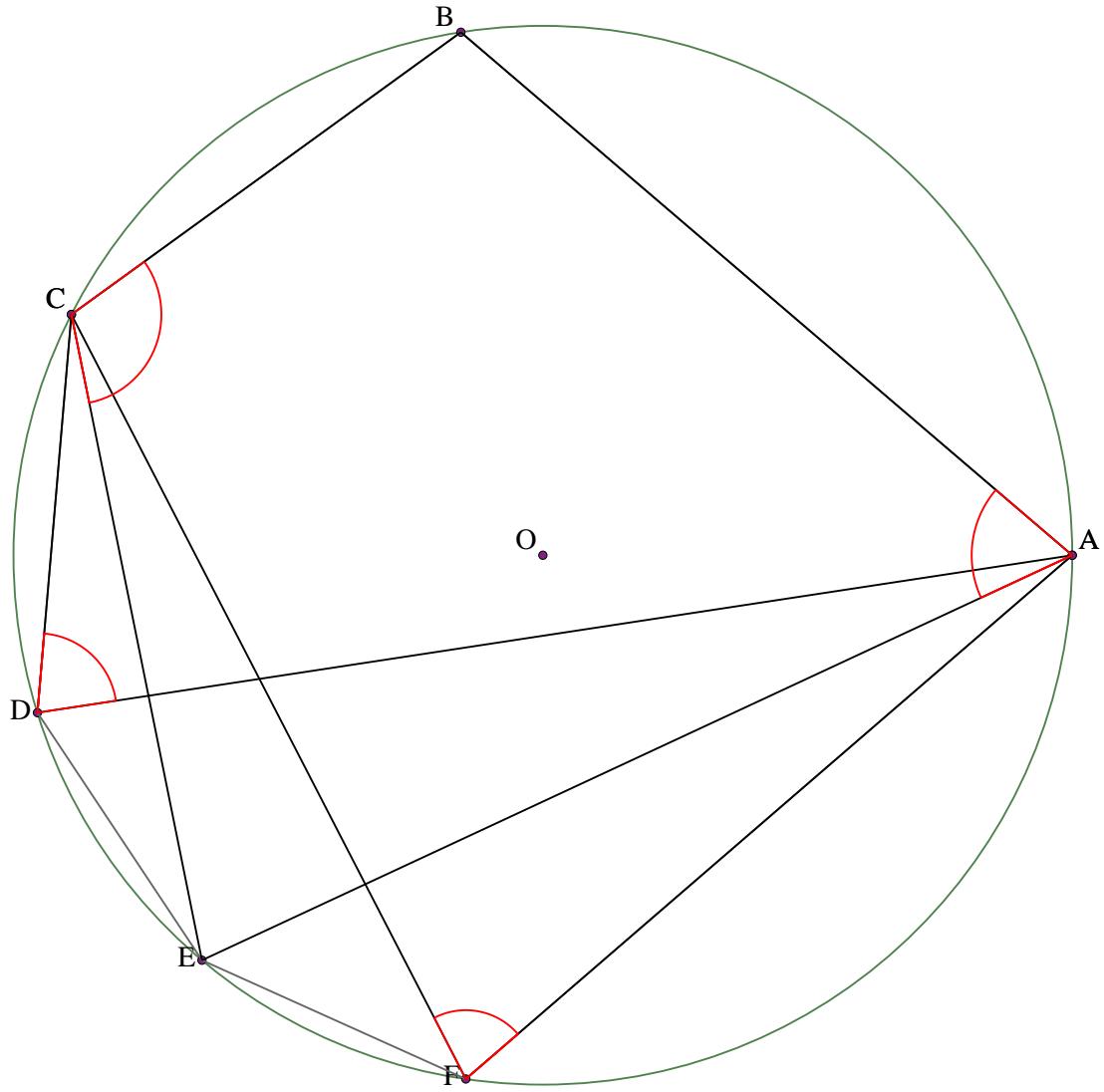


Let ABCDEF be a cyclic hexagon with center O.

Angle DEC = 22° . Angle ADC = 49° . Angle CFA = 49° .

Find angle DBC.

Example 2

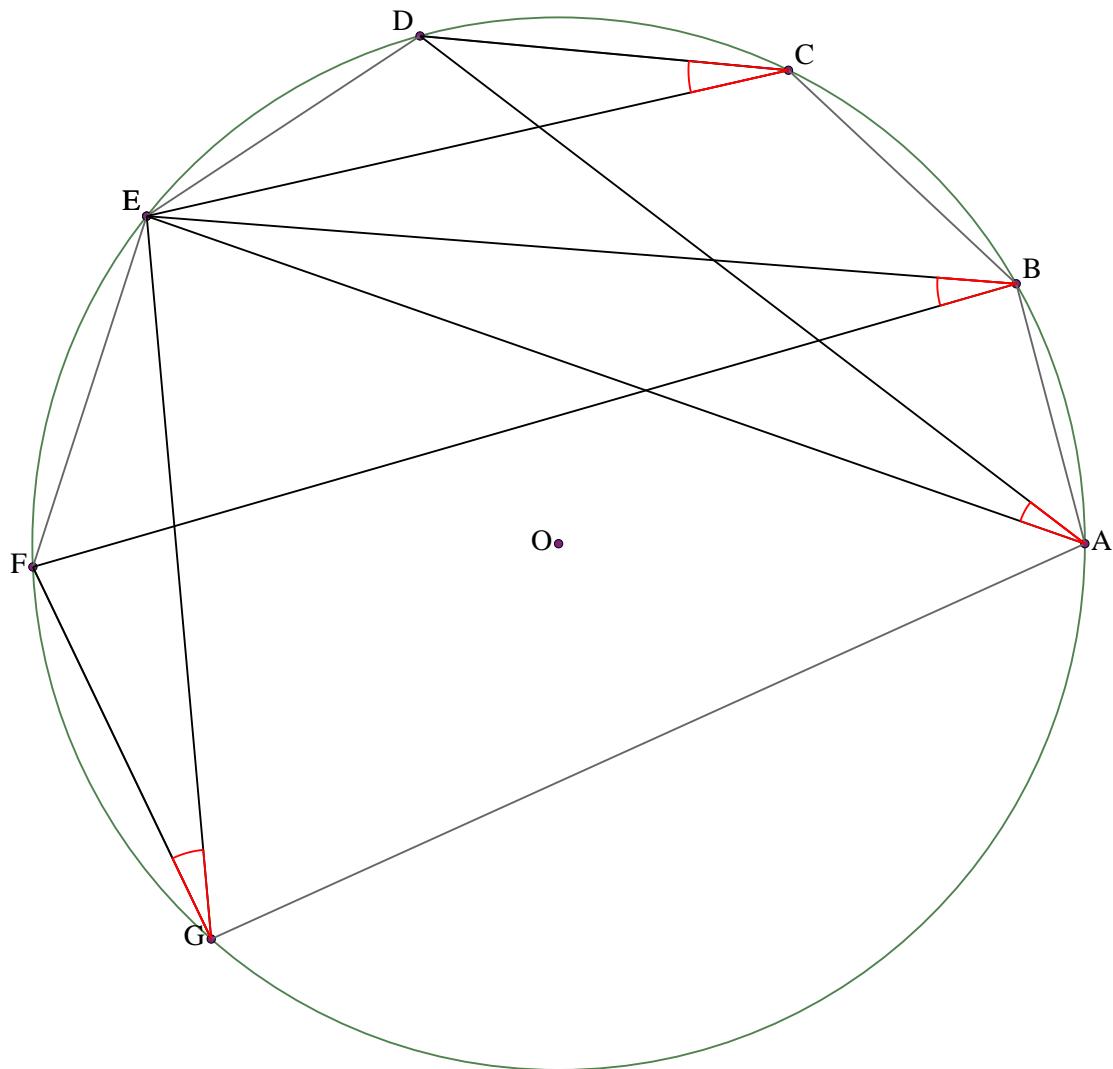


Let ABCDEF be a cyclic hexagon with center O.

Angle AFC = x. Angle CDA = y. Angle EAB = z.

Find angle ECB.

Example 3

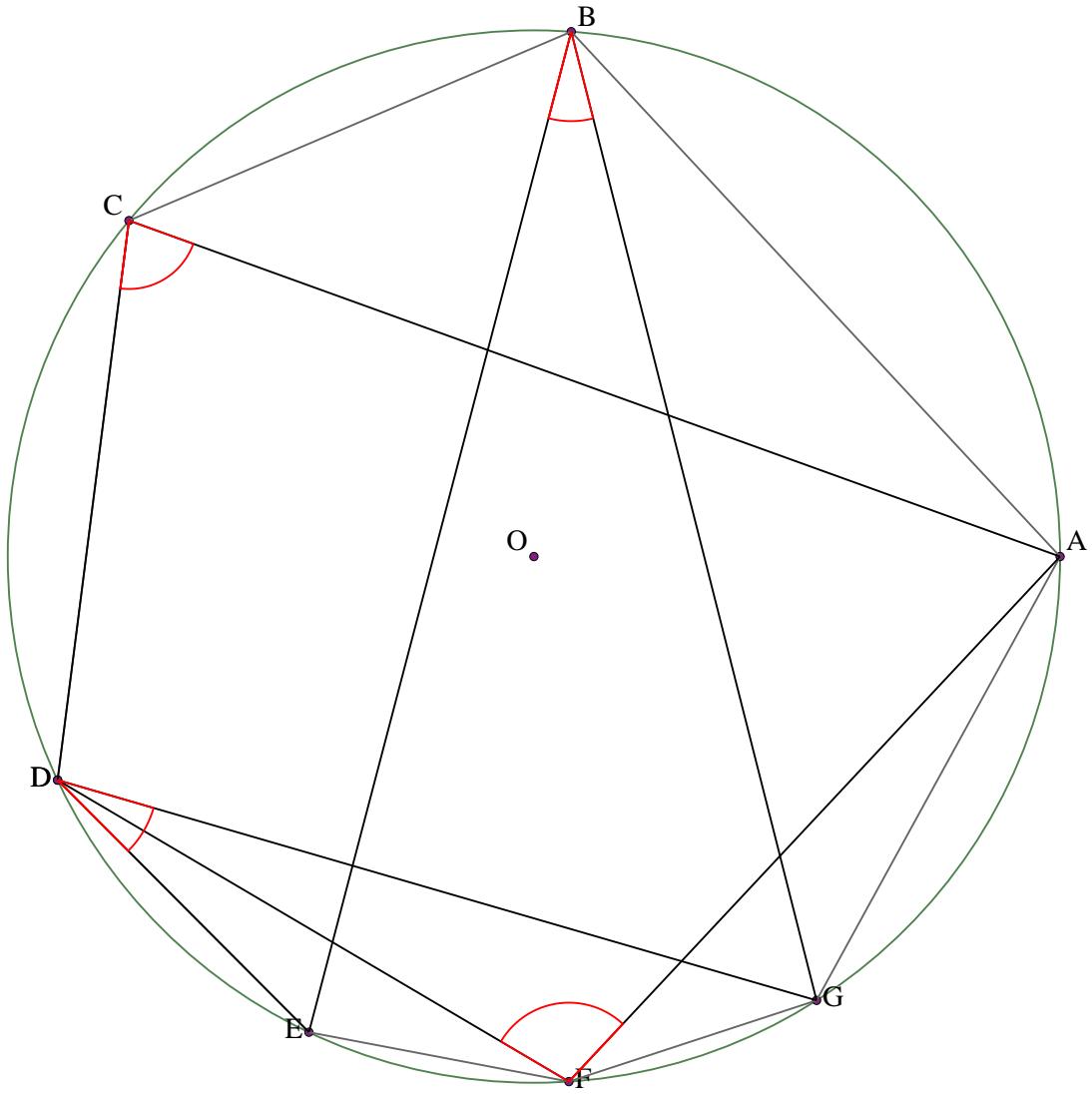


Let ABCDEFG be a cyclic heptagon with center O.

Angle FGE = 21° . Angle ECD = 18° . Angle DAE = 18° .

Find angle EBF.

Example 4

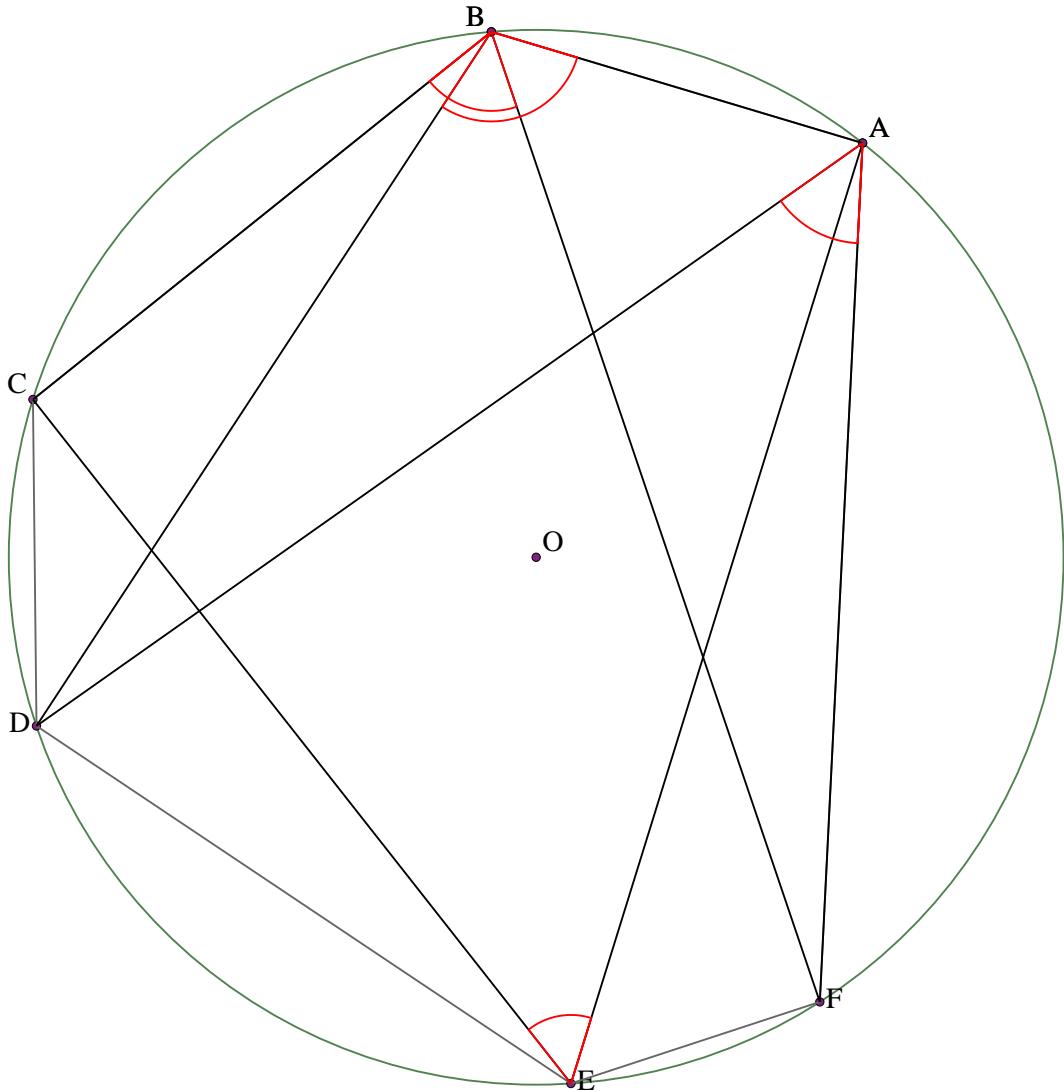


Let ABCDEFG be a cyclic heptagon with center O.

Angle EBG = x. Angle AFD = y. Angle EDG = z.

Find angle DCA.

Example 5

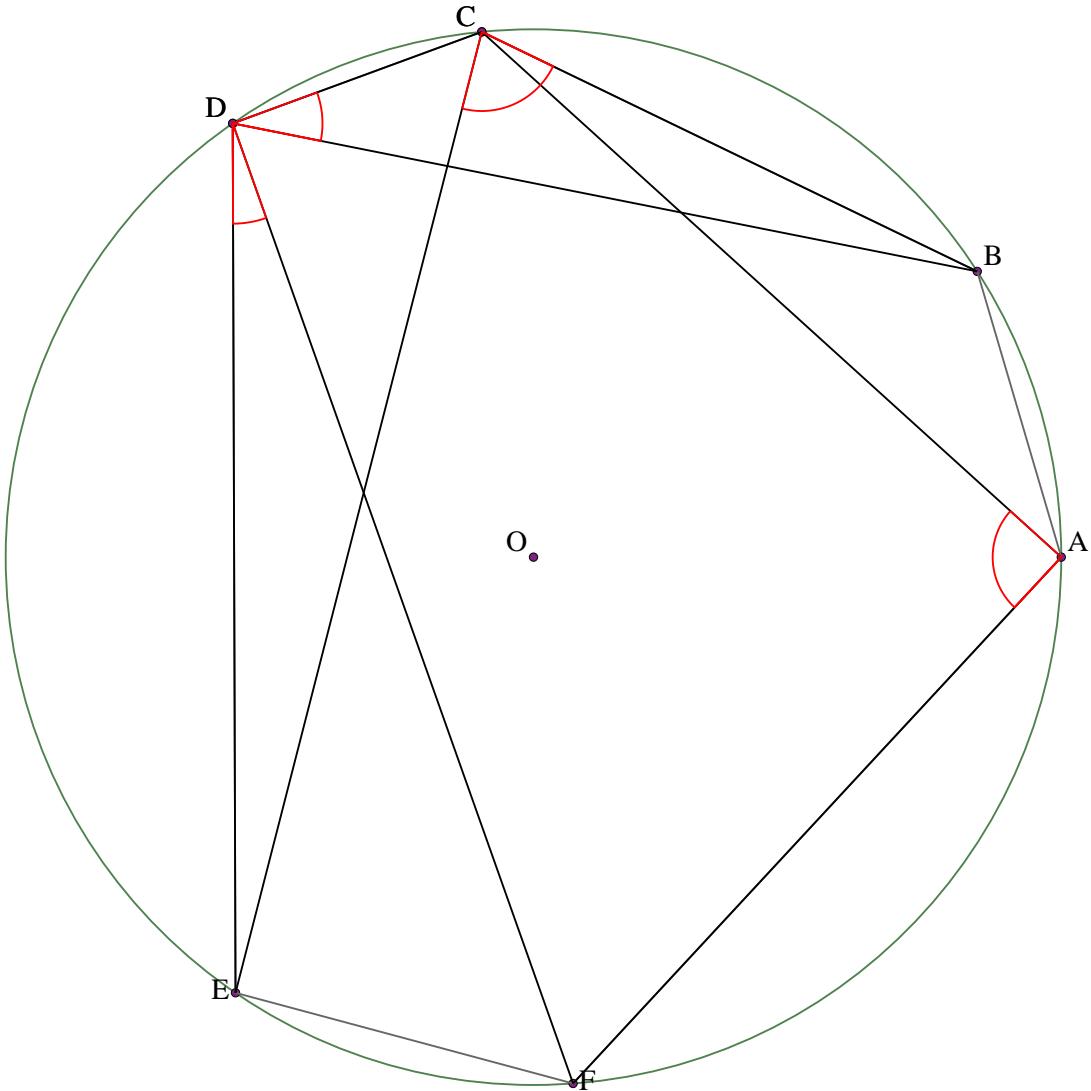


Let ABCDEF be a cyclic hexagon with center O.

Angle FAD = 52° . Angle AEC = 55° . Angle ABD = 107° .

Find angle CBF.

Example 6

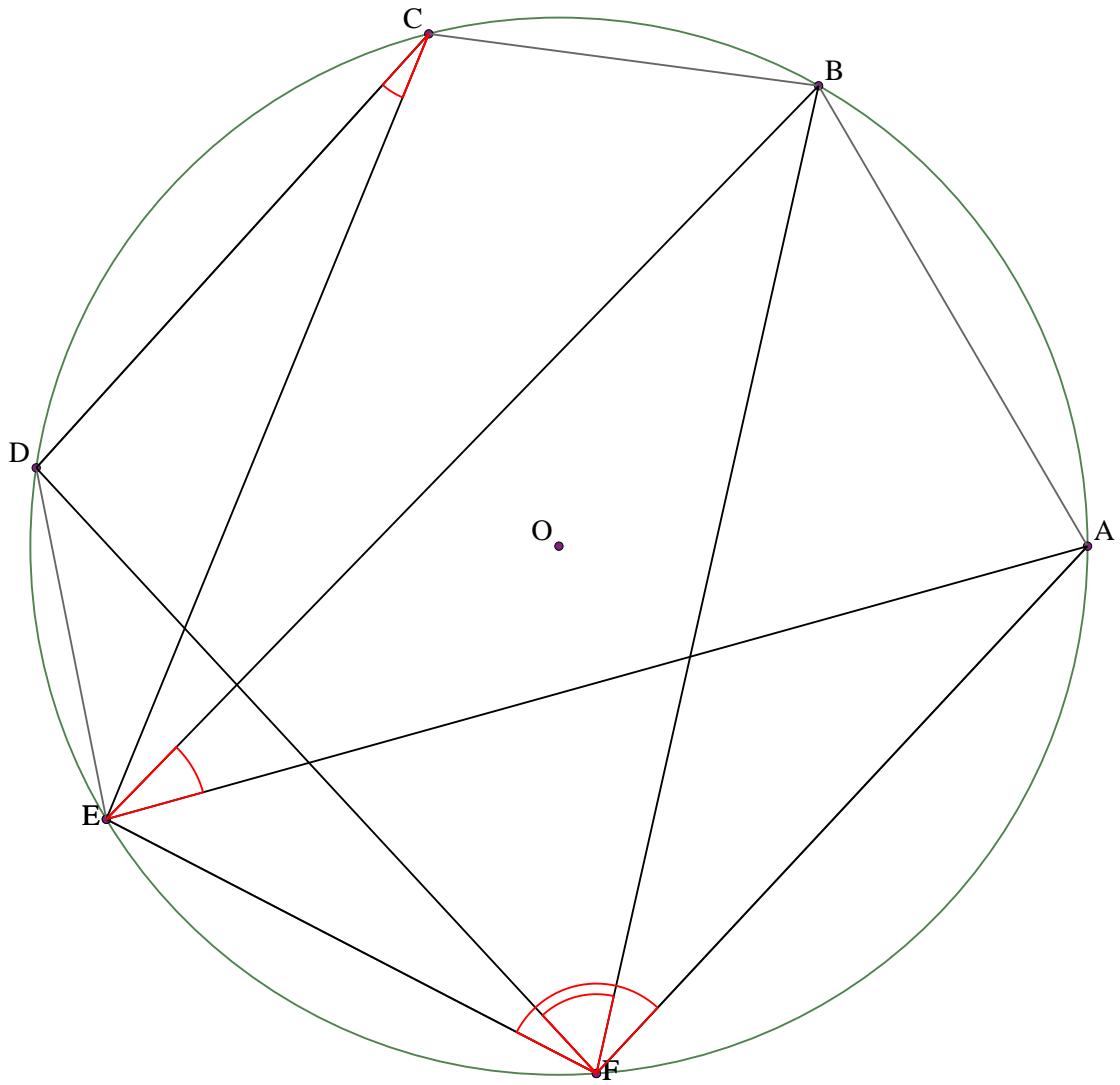


Let ABCDEF be a cyclic hexagon with center O.

Angle $FAC = 89^\circ$. Angle $BCE = 79^\circ$. Angle $BDC = 31^\circ$.

Find angle EDF .

Example 7

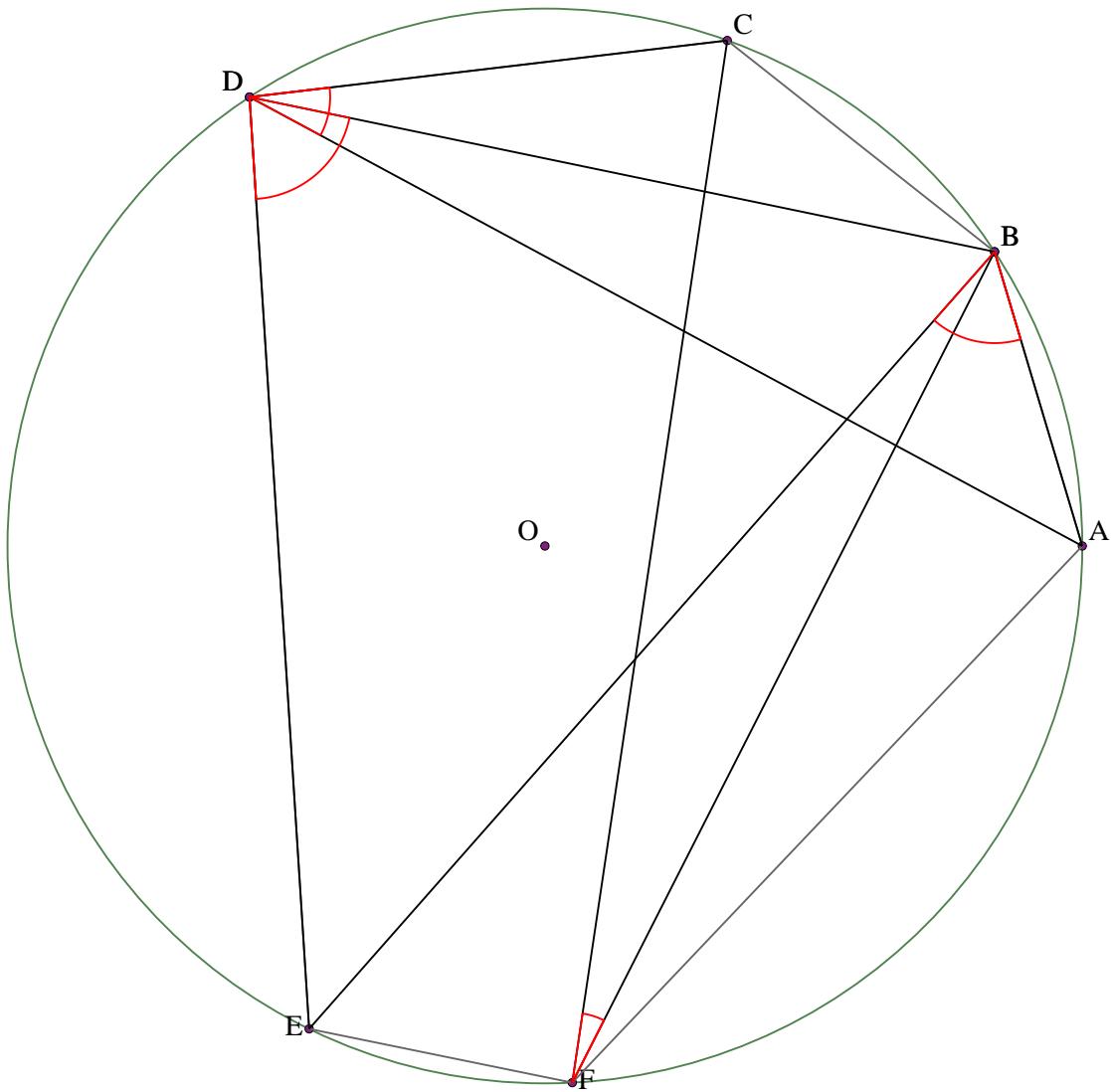


Let ABCDEF be a cyclic hexagon with center O.

Angle ECD = 20° . Angle DFB = 55° . Angle BEA = 30° .

Find angle EFA.

Example 8

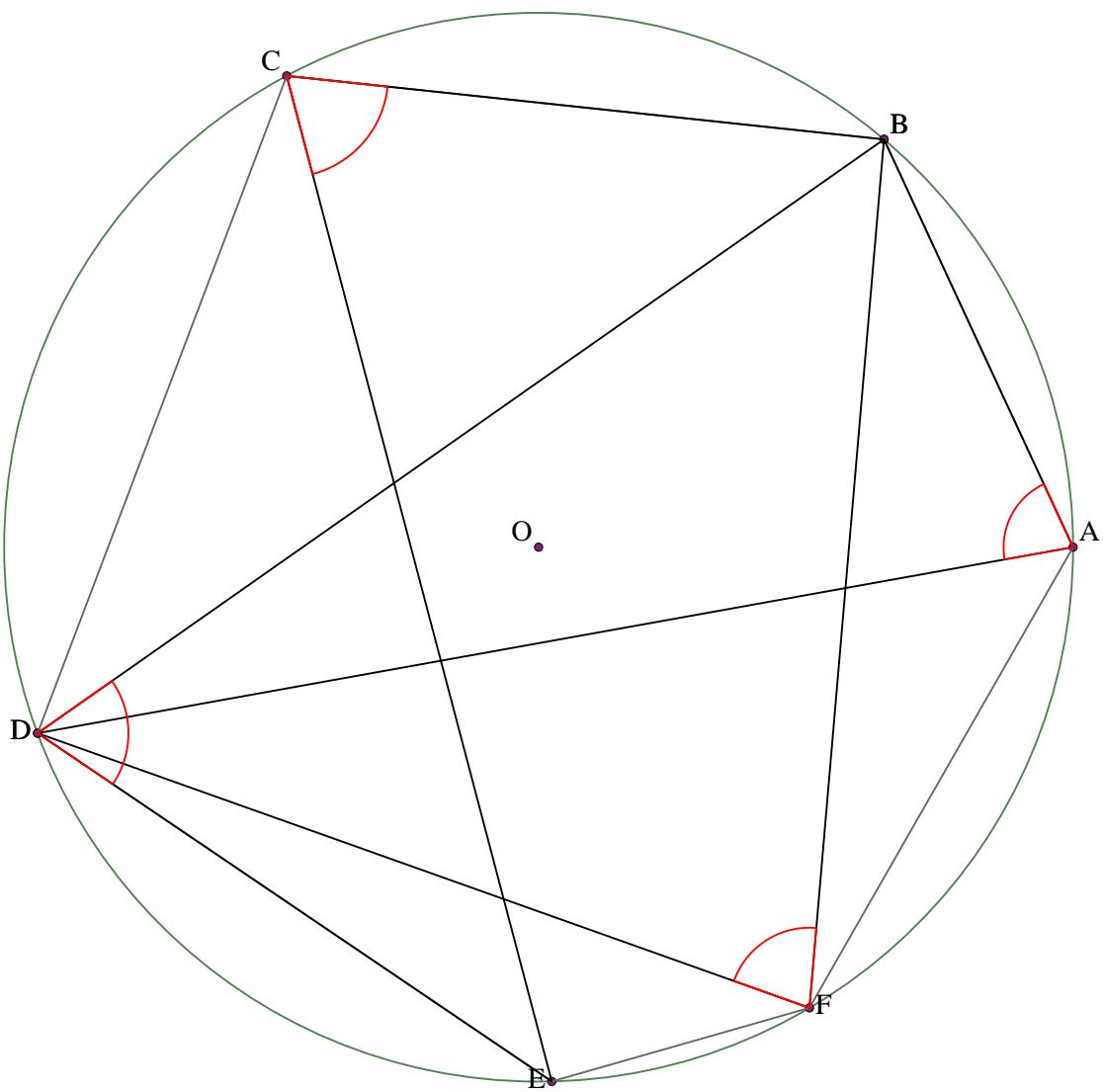


Let ABCDEF be a cyclic hexagon with center O.

Angle BFC = x . Angle EDB = y . Angle ABE = z .

Find angle CDA.

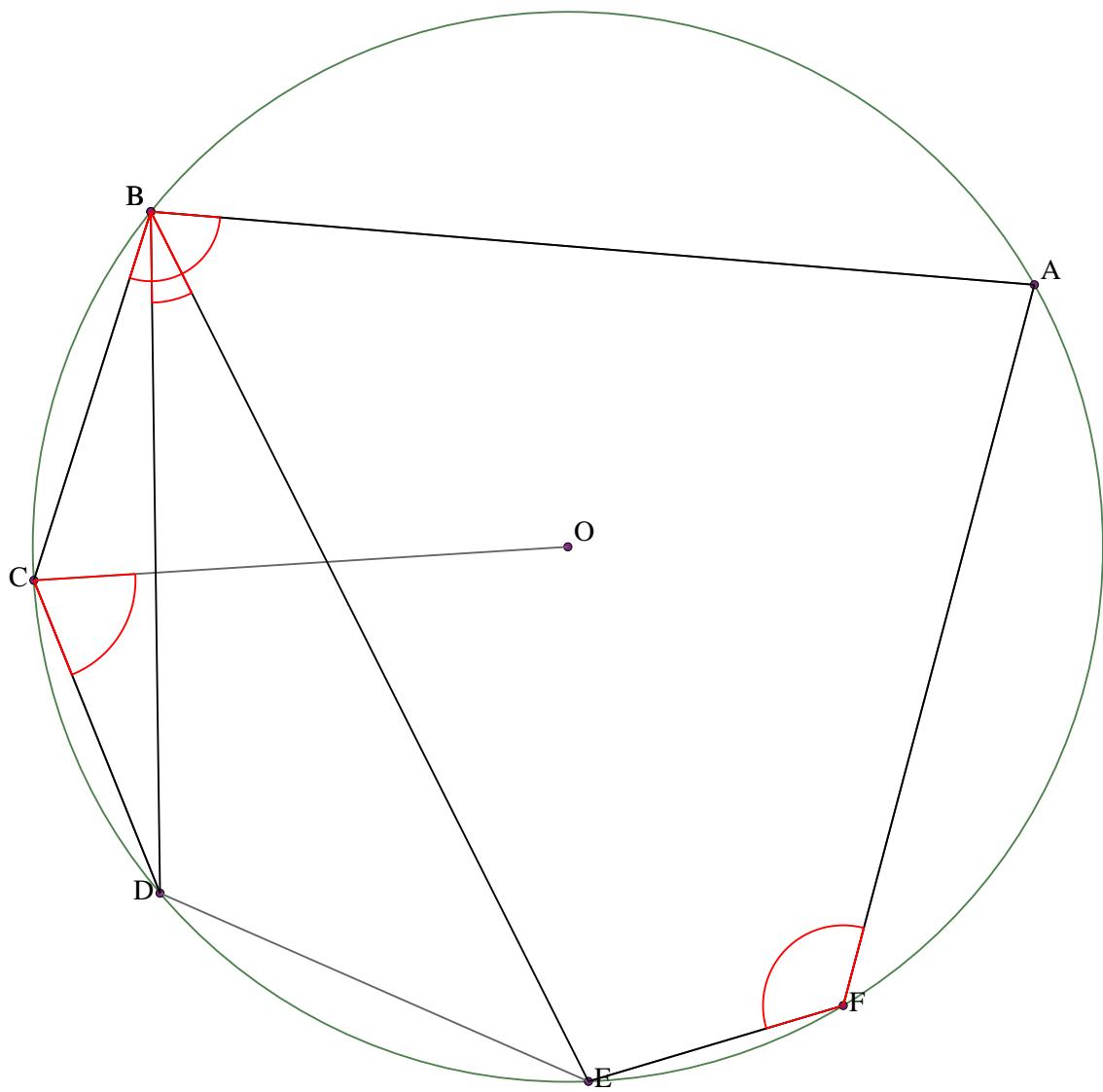
Example 9



Let ABCDEF be a cyclic hexagon with center O.

Prove that $BFD + BDE = BAD + BCE$

Example 10

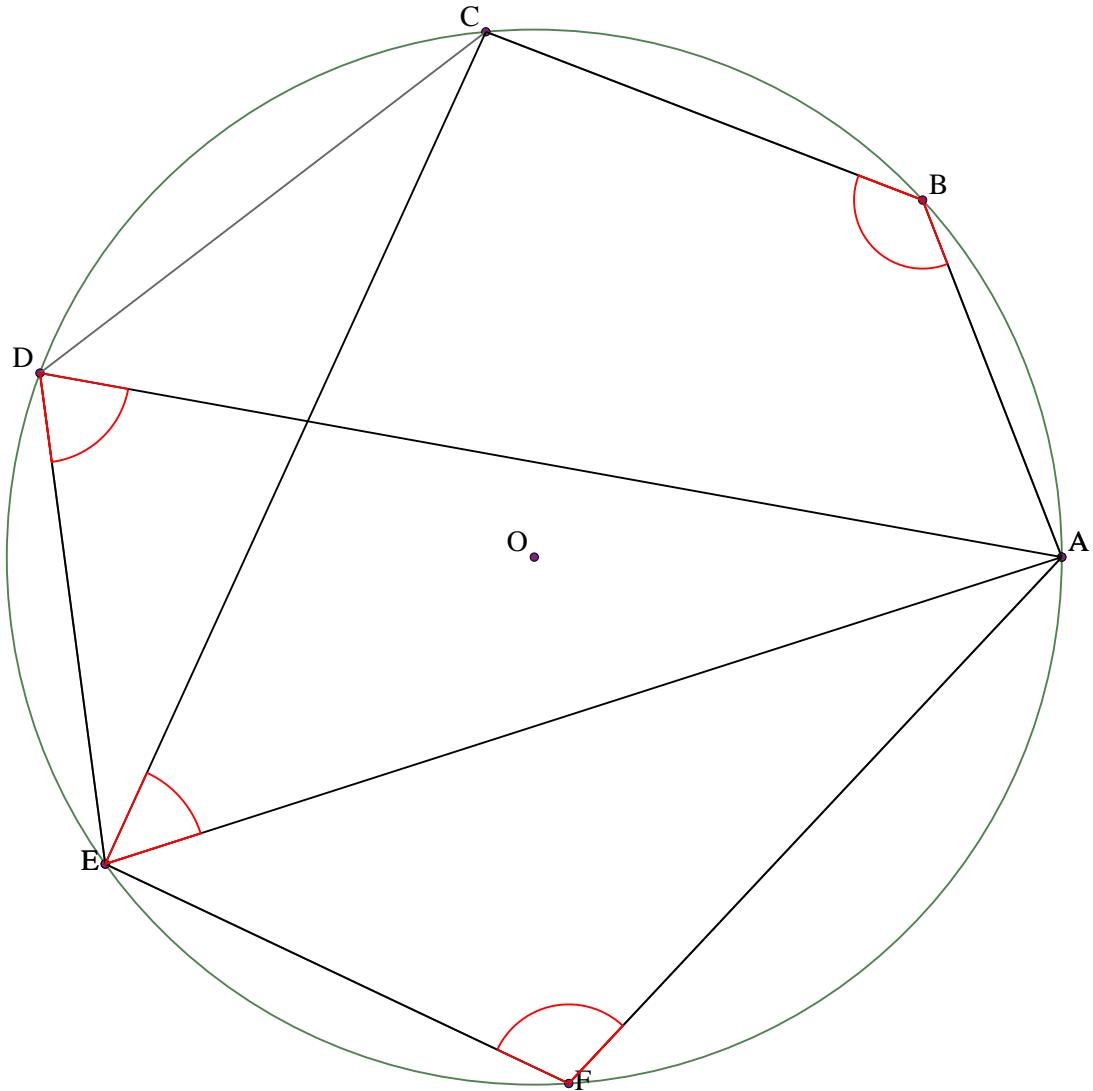


Let ABCDEF be a cyclic hexagon with center O.

Angle EBD = x. Angle AFE = y. Angle DCO = z.

Find angle CBA.

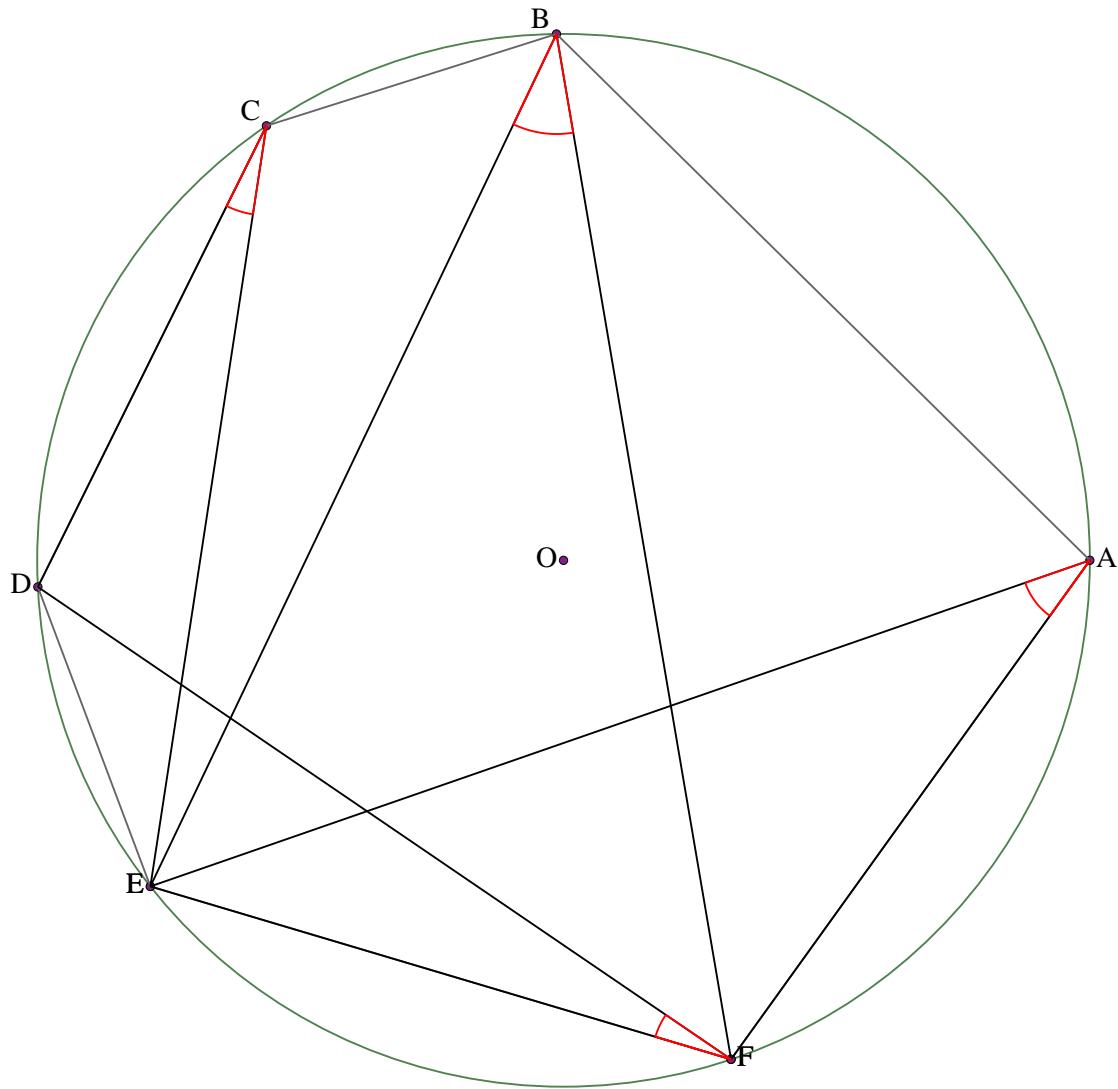
Example 11



Let ABCDEF be a cyclic hexagon with center O.

Prove that $ABC + AFE + ADE + AEC = 360$

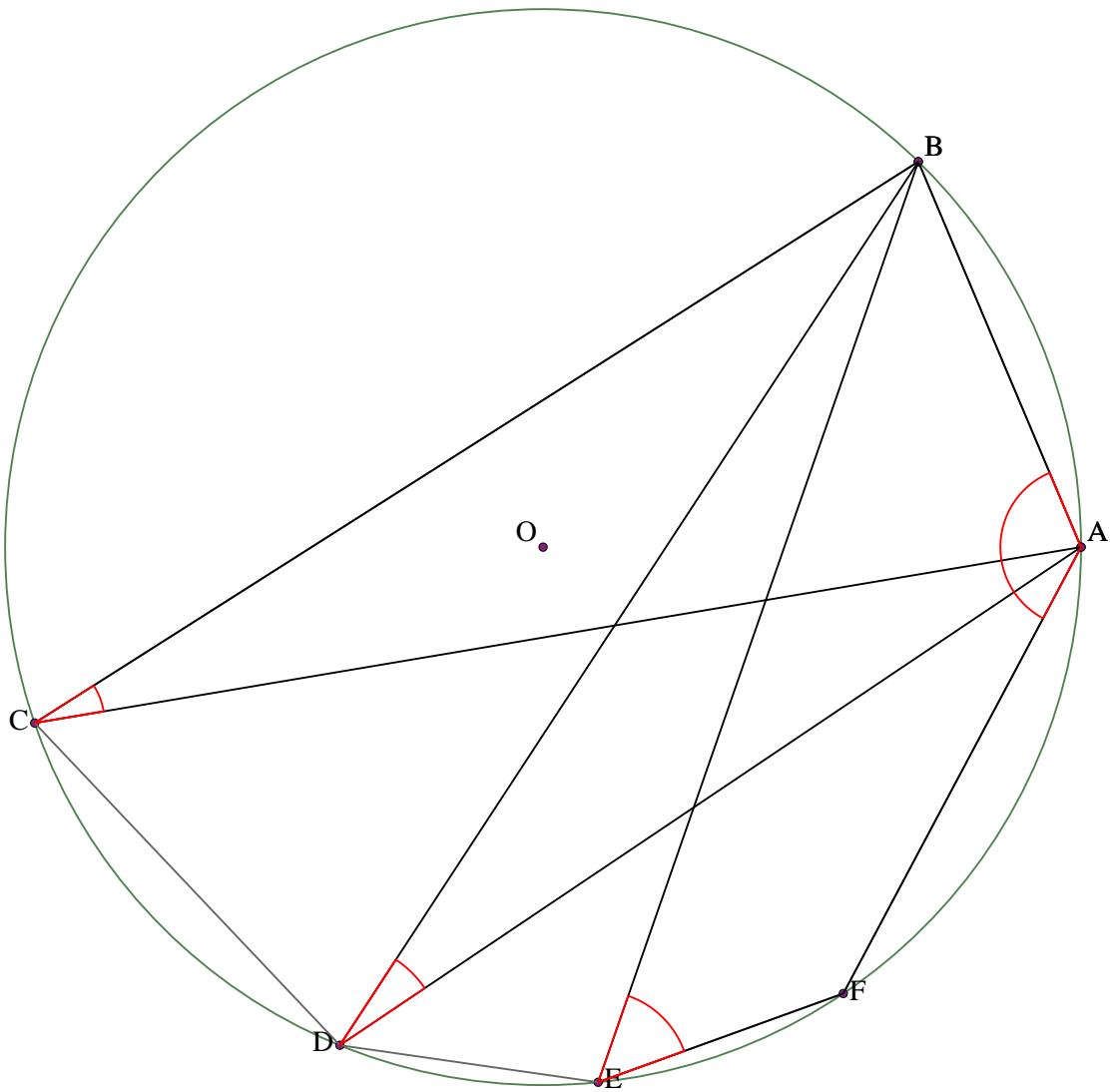
Example 12



Let ABCDEF be a cyclic hexagon with center O.

Prove that $EAF + DFE = DCE + EBF$

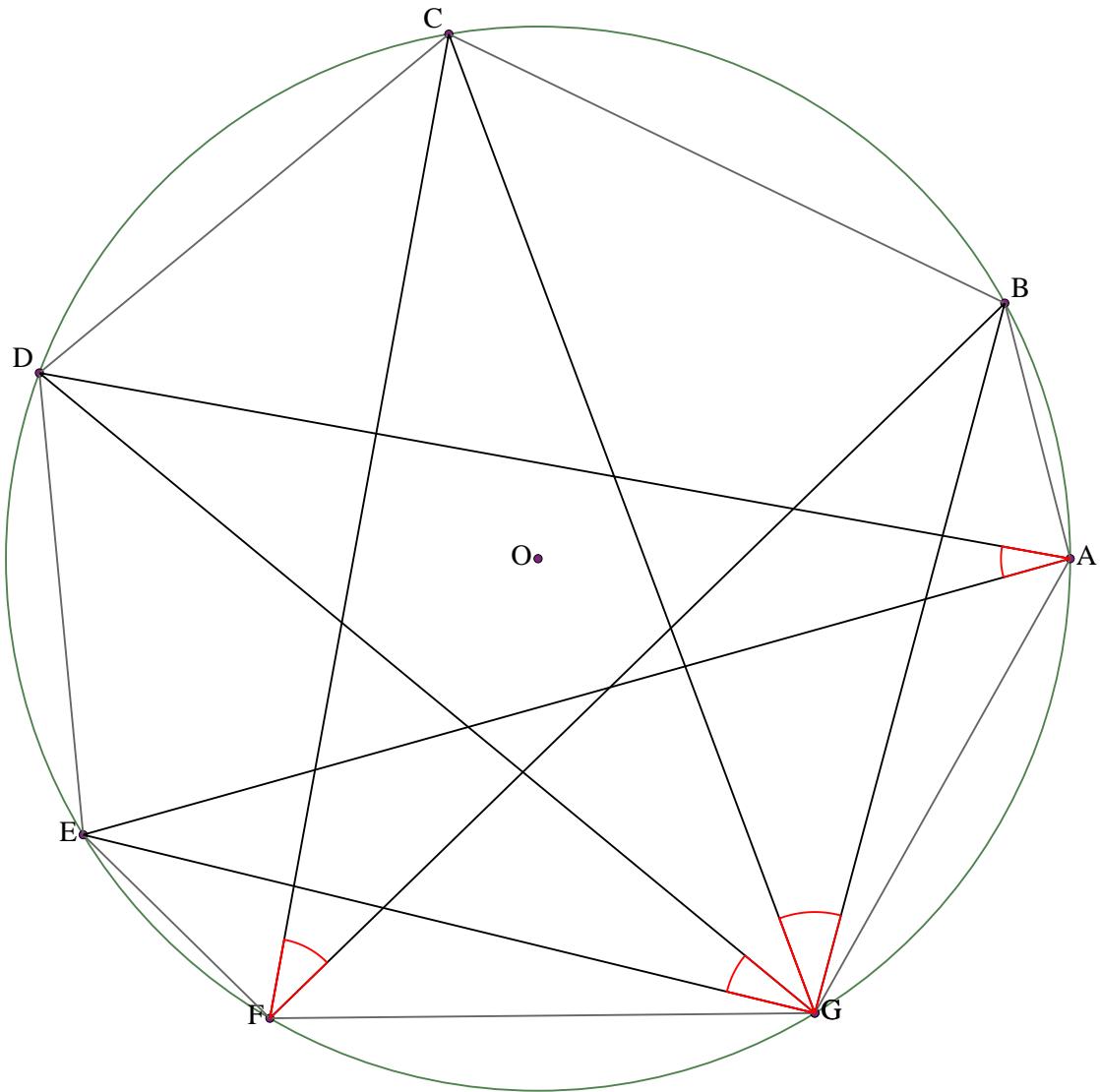
Example 13



Let ABCDEF be a cyclic hexagon with center O.

Prove that $ACB + BAF + BEF = ADB + 180$

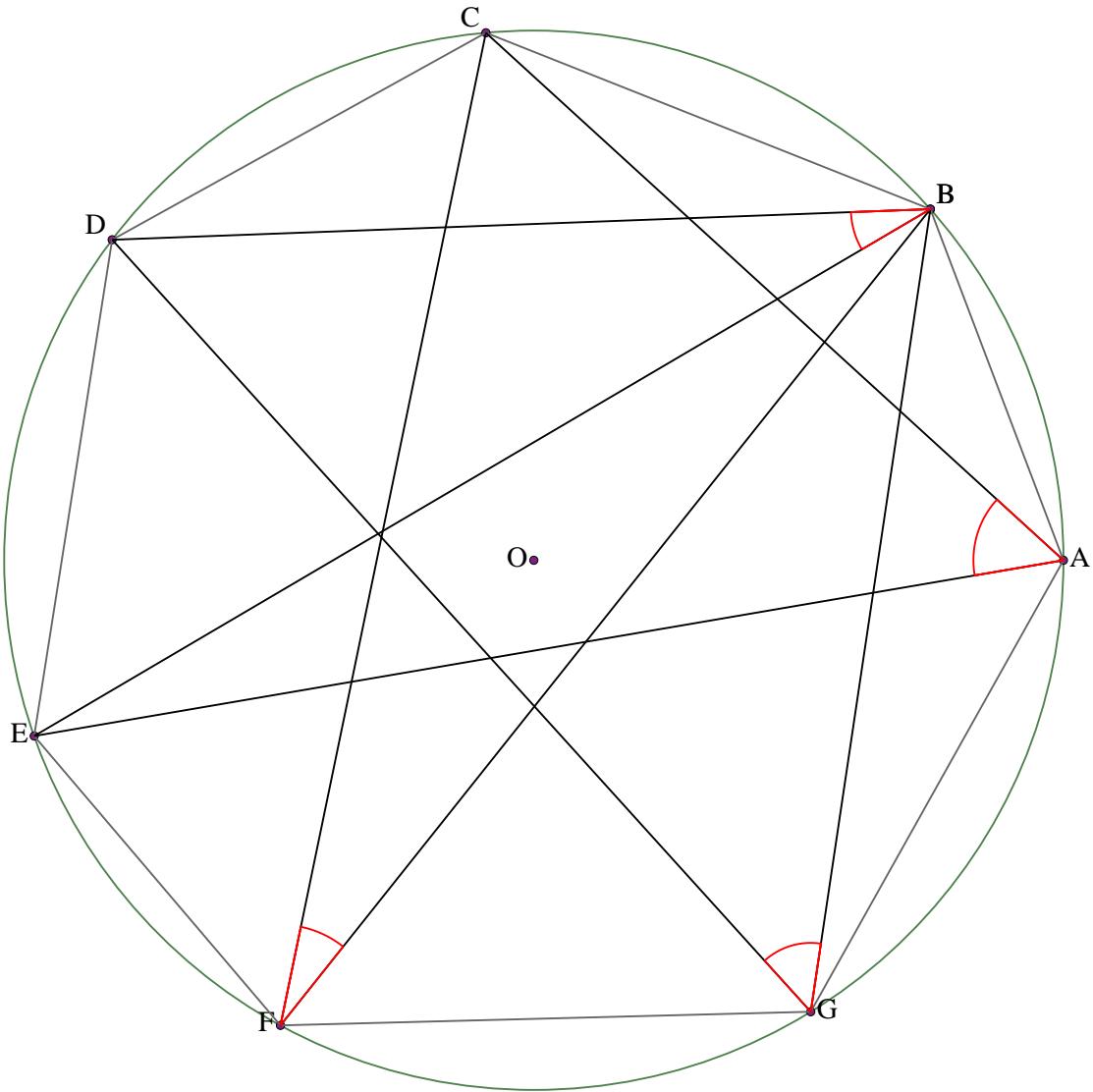
Example 14



Let $ABCDEFG$ be a cyclic heptagon with center O .

Prove that $BFC + DGE = DAE + BGC$

Example 15

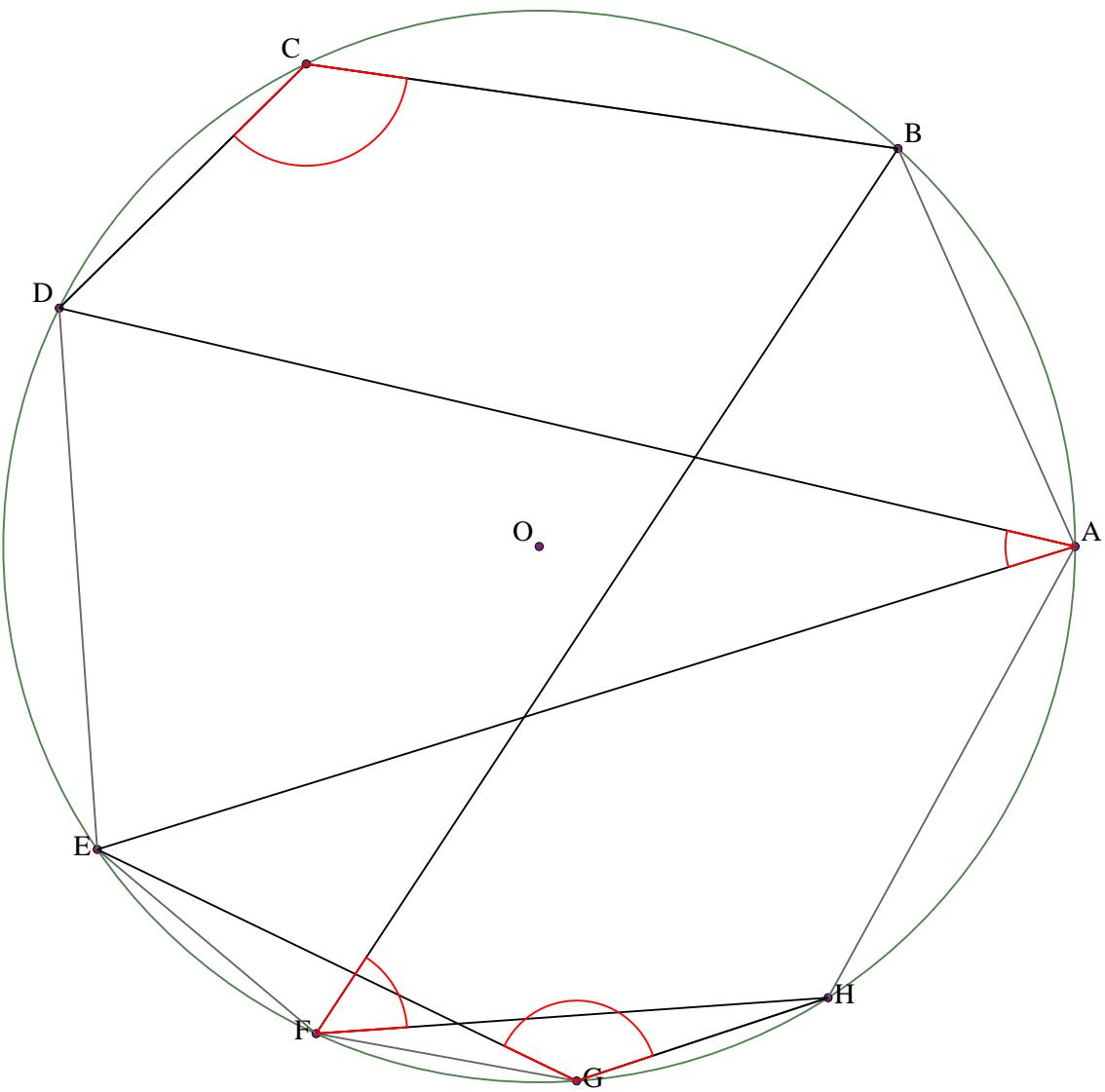


Let ABCDEFG be a cyclic heptagon with center O.

Angle BGD = x . Angle DBE = y . Angle CFB = z .

Find angle EAC.

Example 16

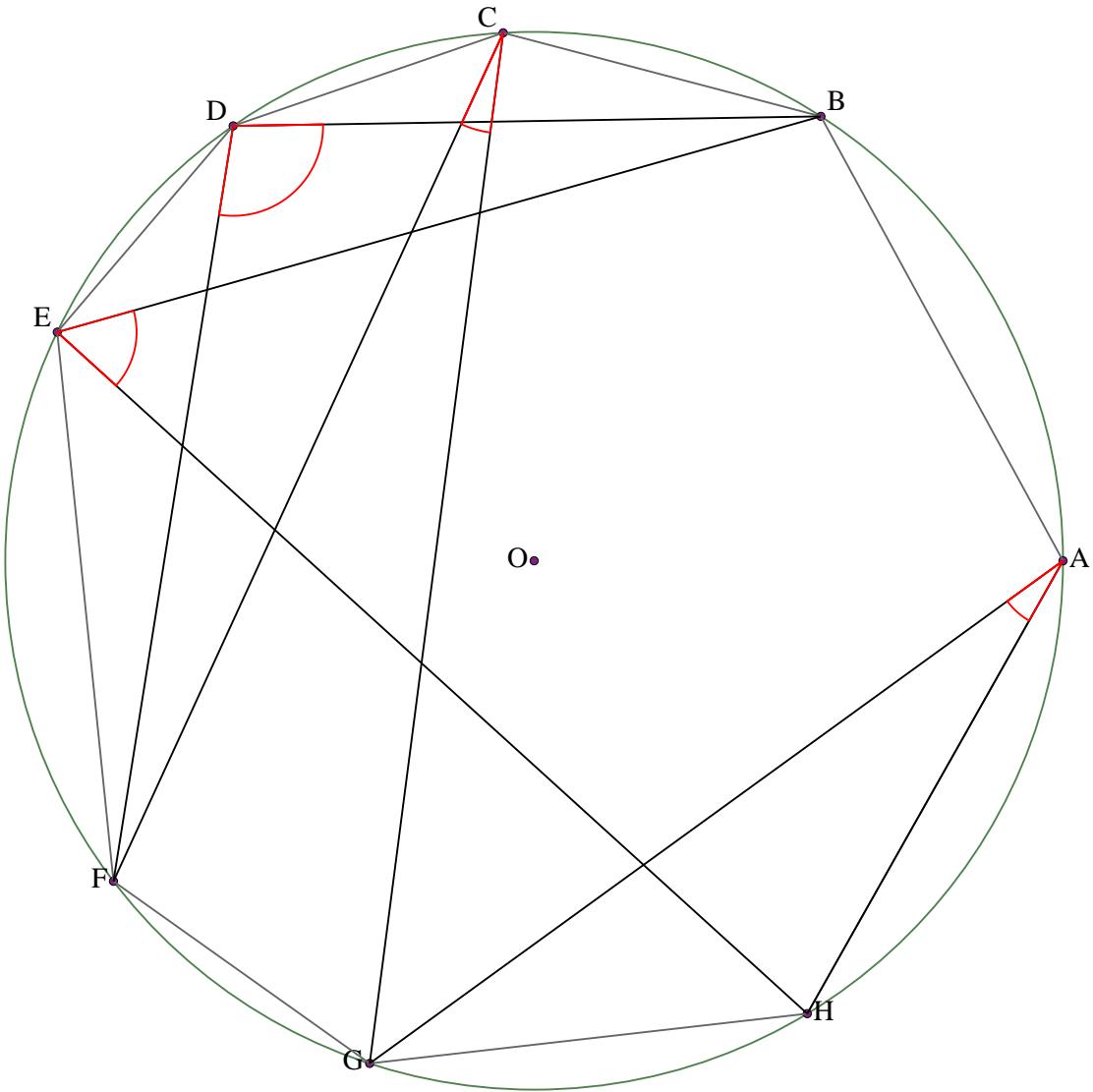


Let ABCDEFGH be a cyclic octagon with center O.

Angle DAE = 30° . Angle HFB = 53° . Angle EGH = 136° .

Find angle BCD.

Example 17

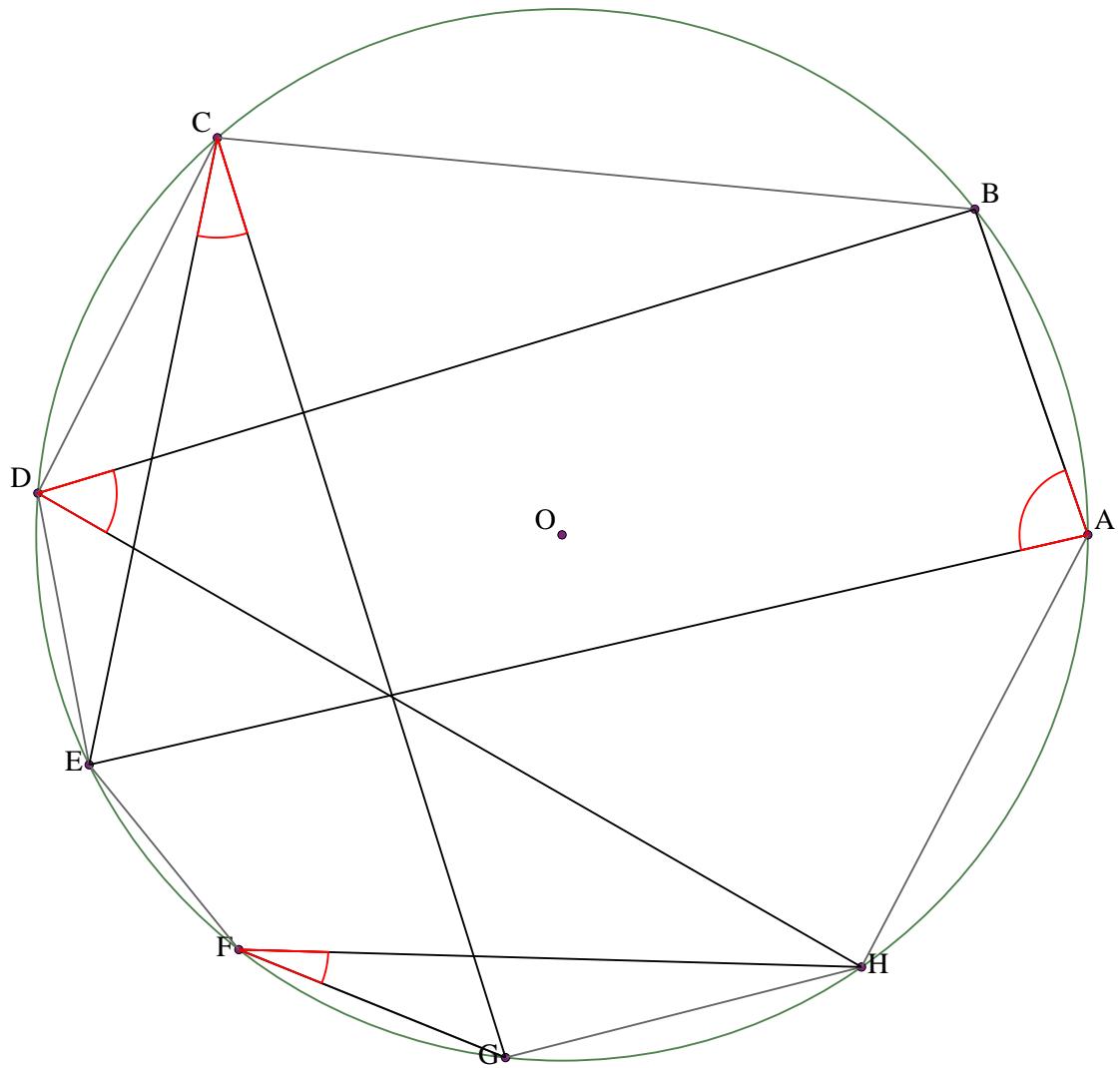


Let ABCDEFGH be a cyclic octagon with center O.

Angle BDF = x . Angle HEB = y . Angle FCG = z .

Find angle GAH.

Example 18

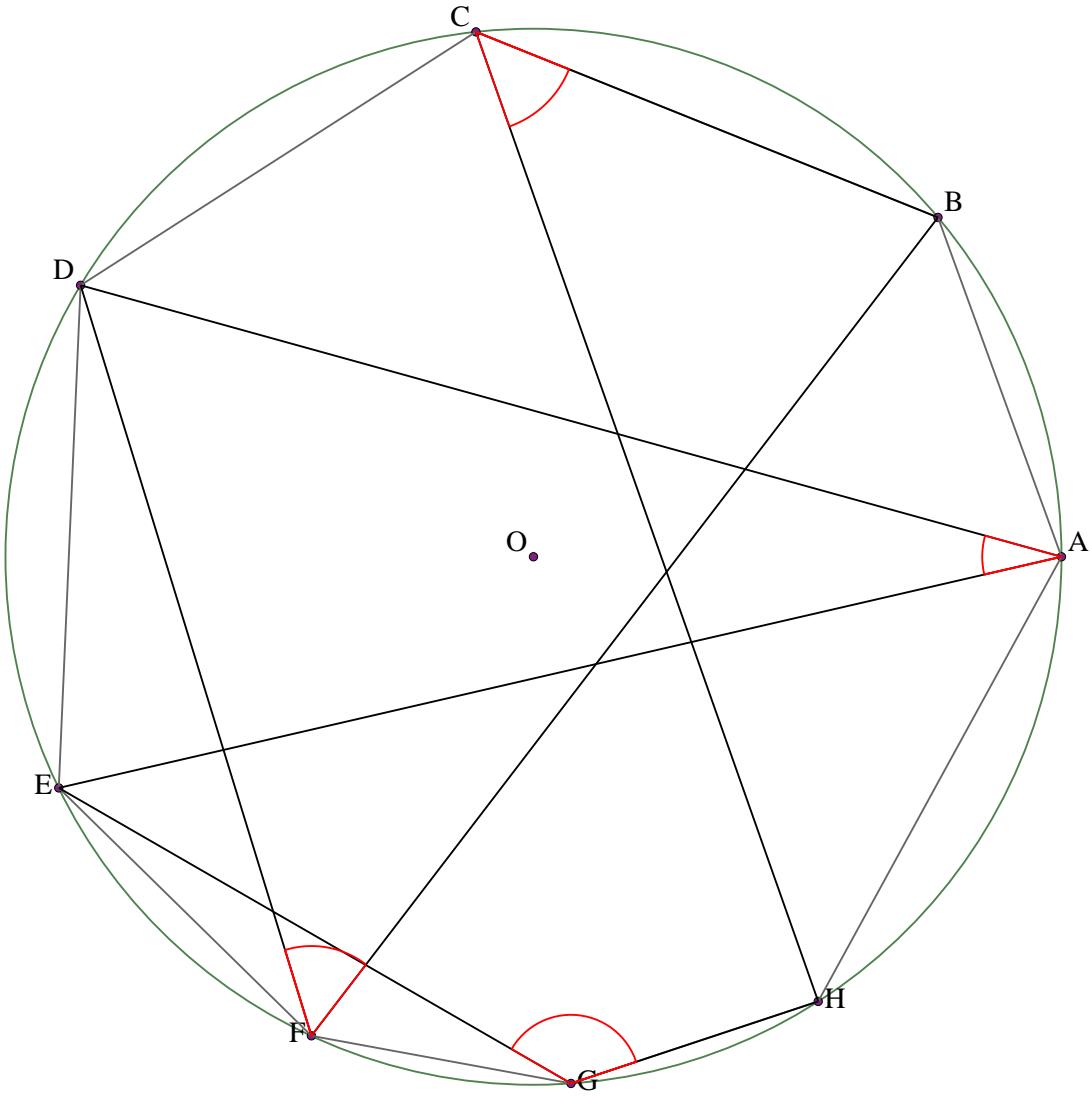


Let ABCDEFGH be a cyclic octagon with center O.

Angle EAB = x . Angle BDH = y . Angle GCE = z .

Find angle HFG.

Example 19

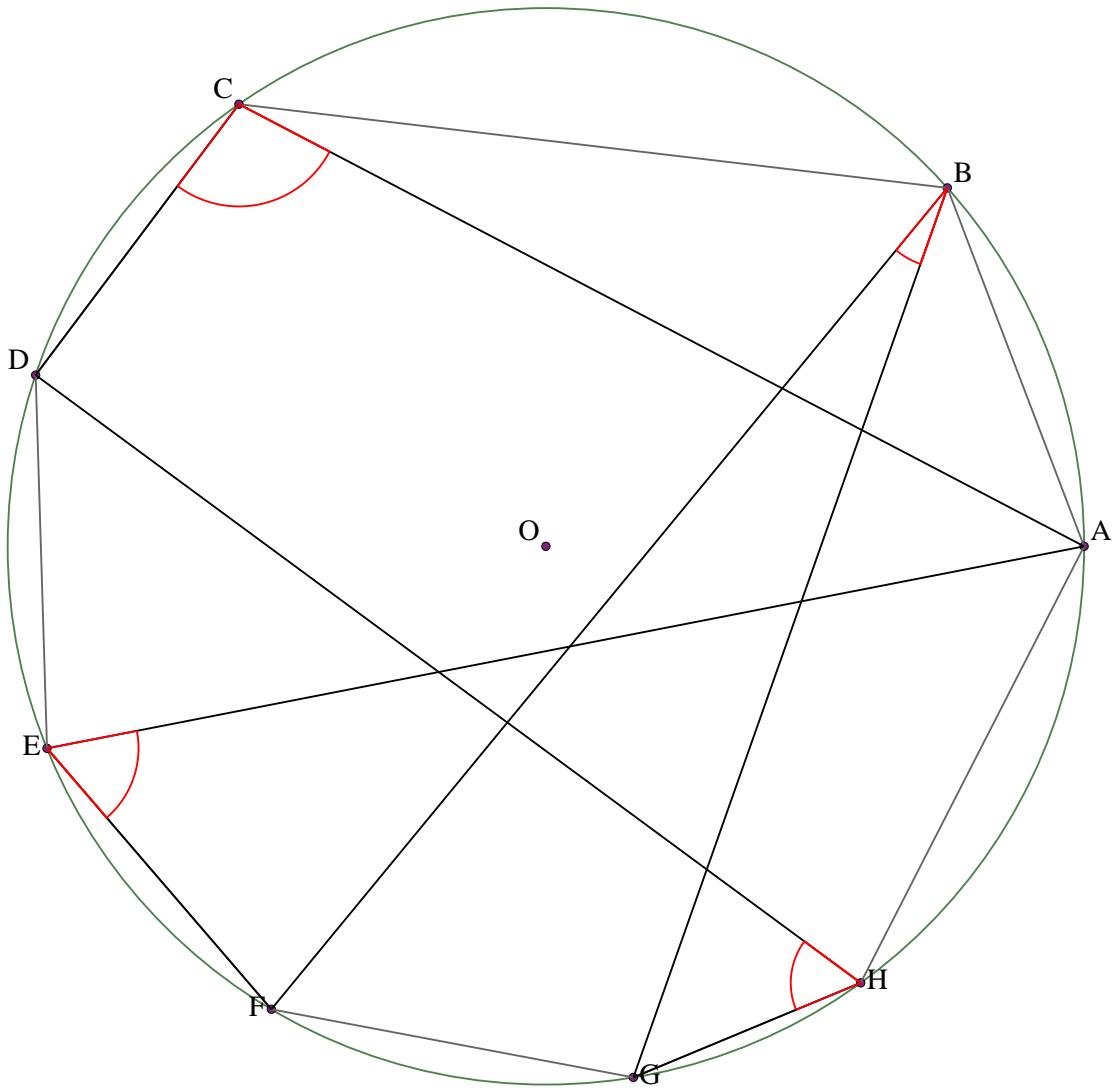


Let ABCDEFGH be a cyclic octagon with center O.

Angle EAD = 28° . Angle DFB = 55° . Angle BCH = 49° .

Find angle HGE.

Example 20

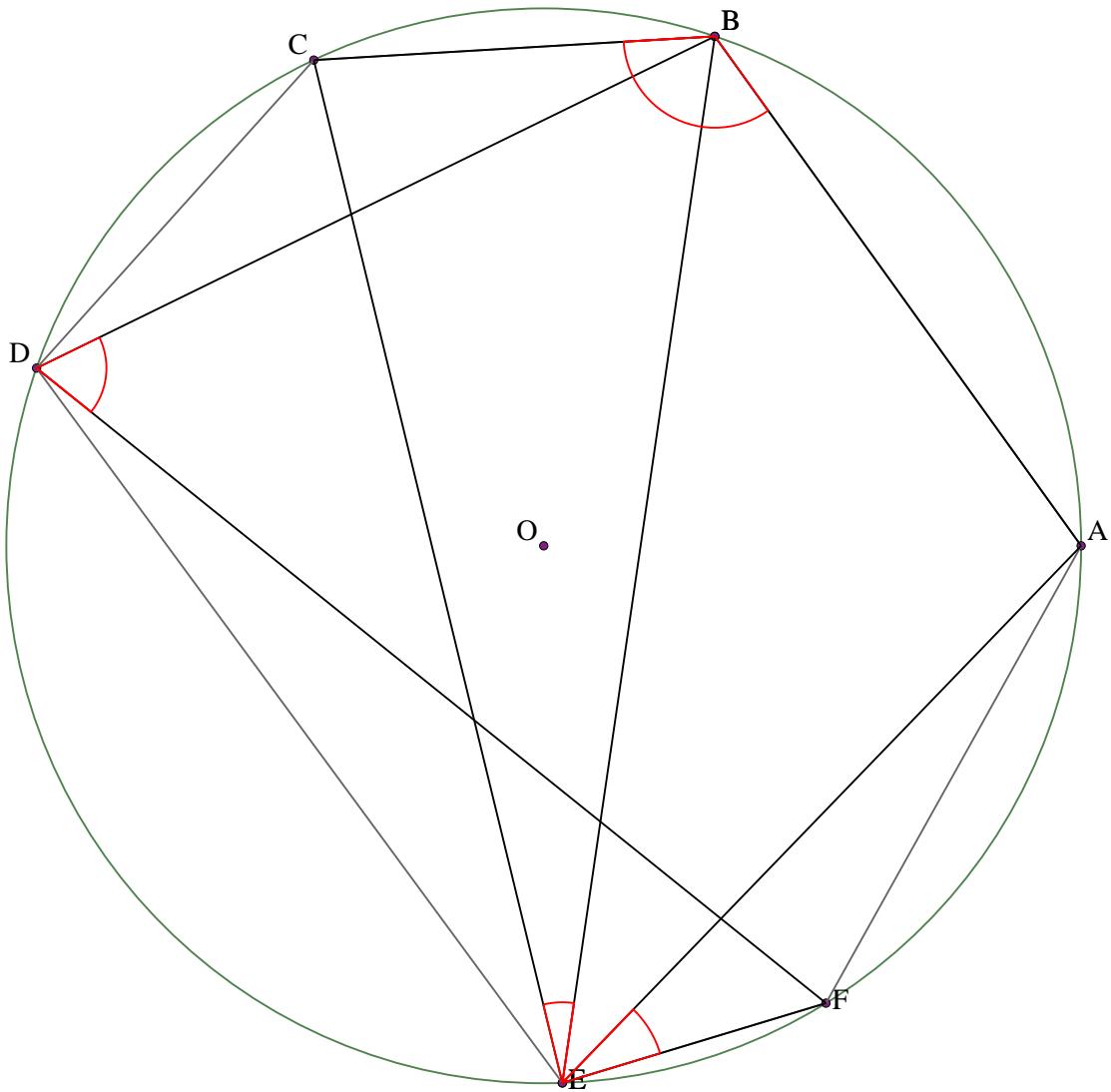


Let ABCDEFGH be a cyclic octagon with center O.

Angle $DHG = 59^\circ$. Angle $FEA = 60^\circ$. Angle $GBF = 20^\circ$.

Find angle ACD .

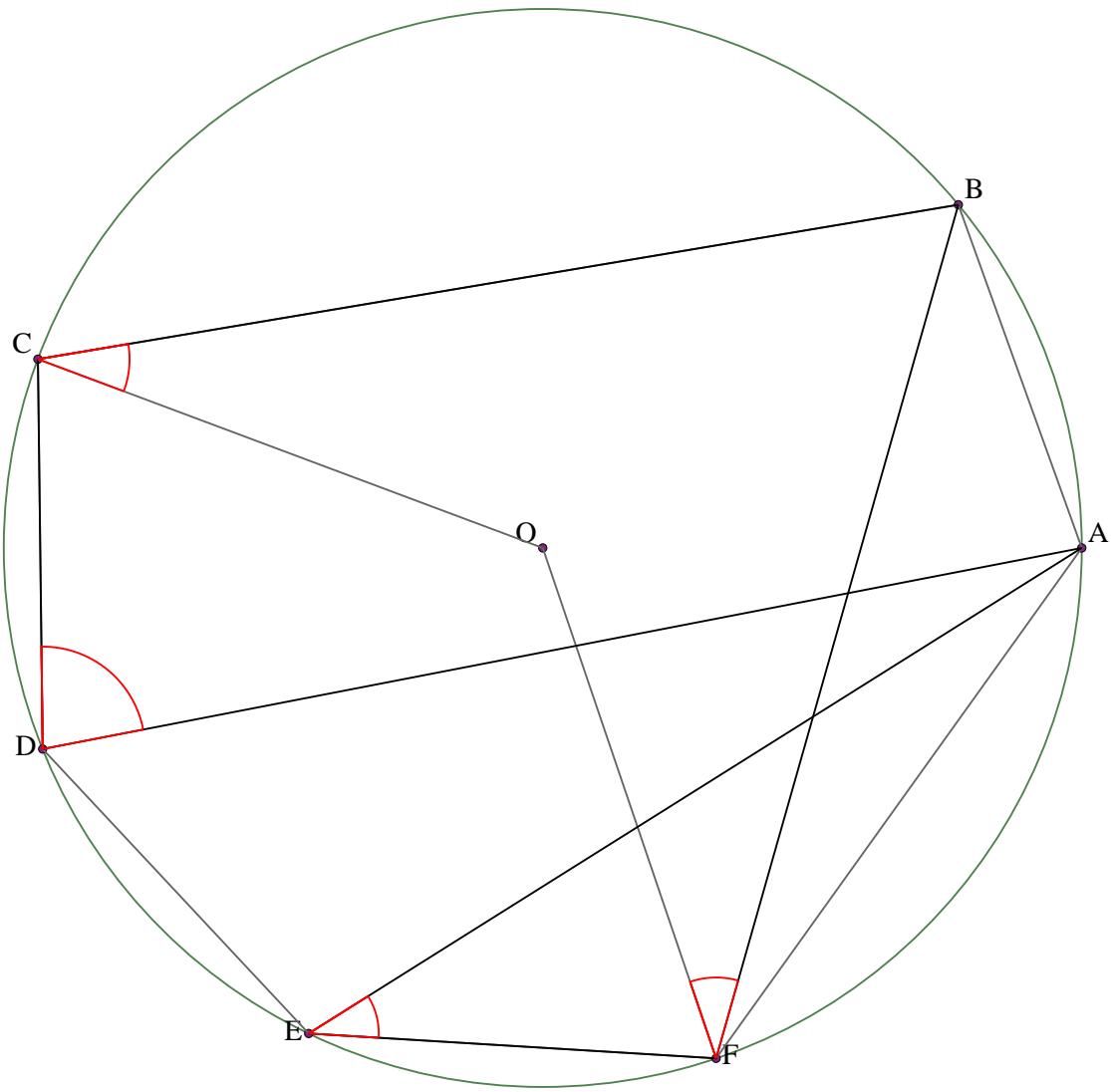
Example 21



Let ABCDEF be a cyclic hexagon with center O.

Prove that $BDF + BEC + ABC = AEF + 180$

Example 22

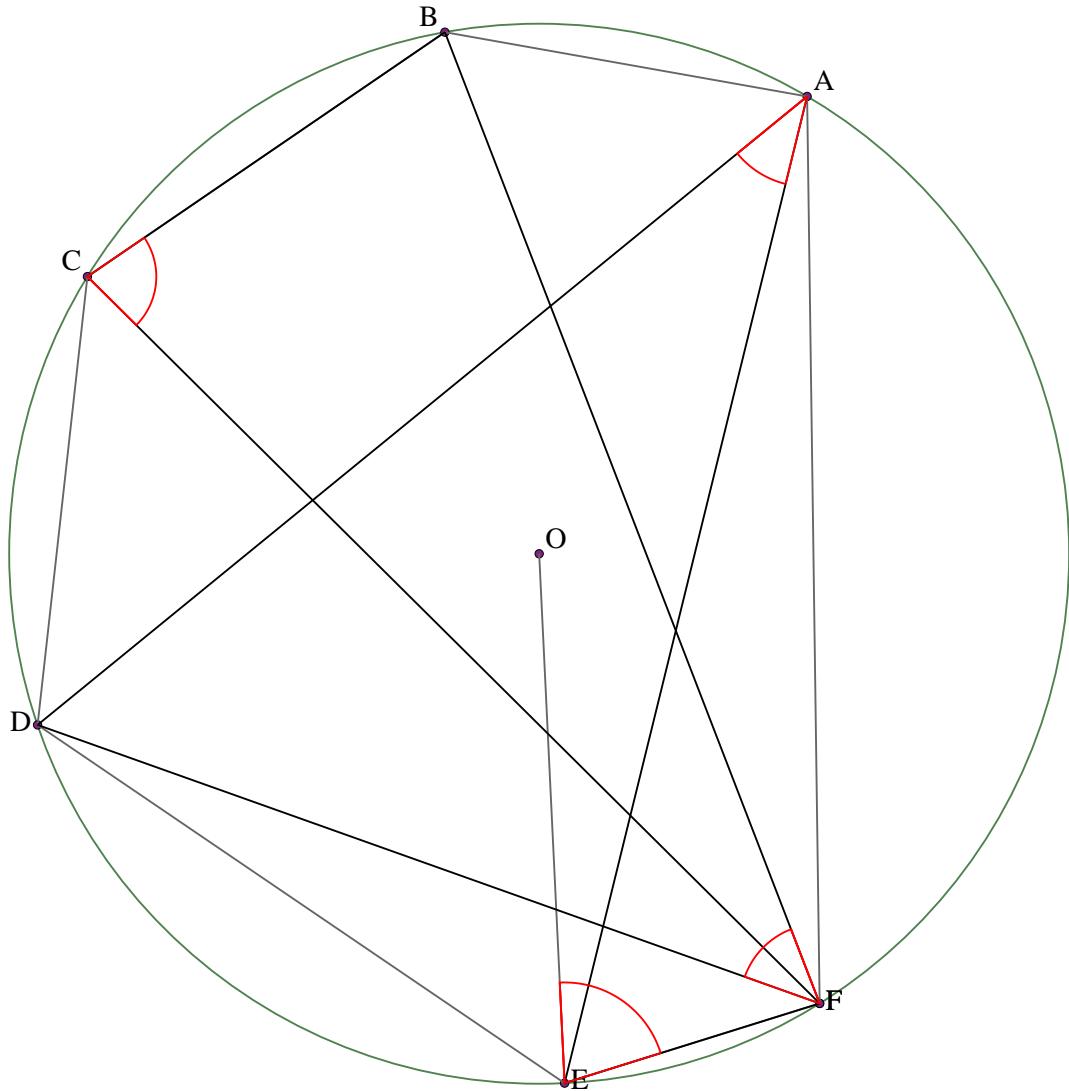


Let ABCDEF be a cyclic hexagon with center O.

Angle AEF = 36°. Angle BCO = 30°. Angle CDA = 80°.

Find angle OFB.

Example 23

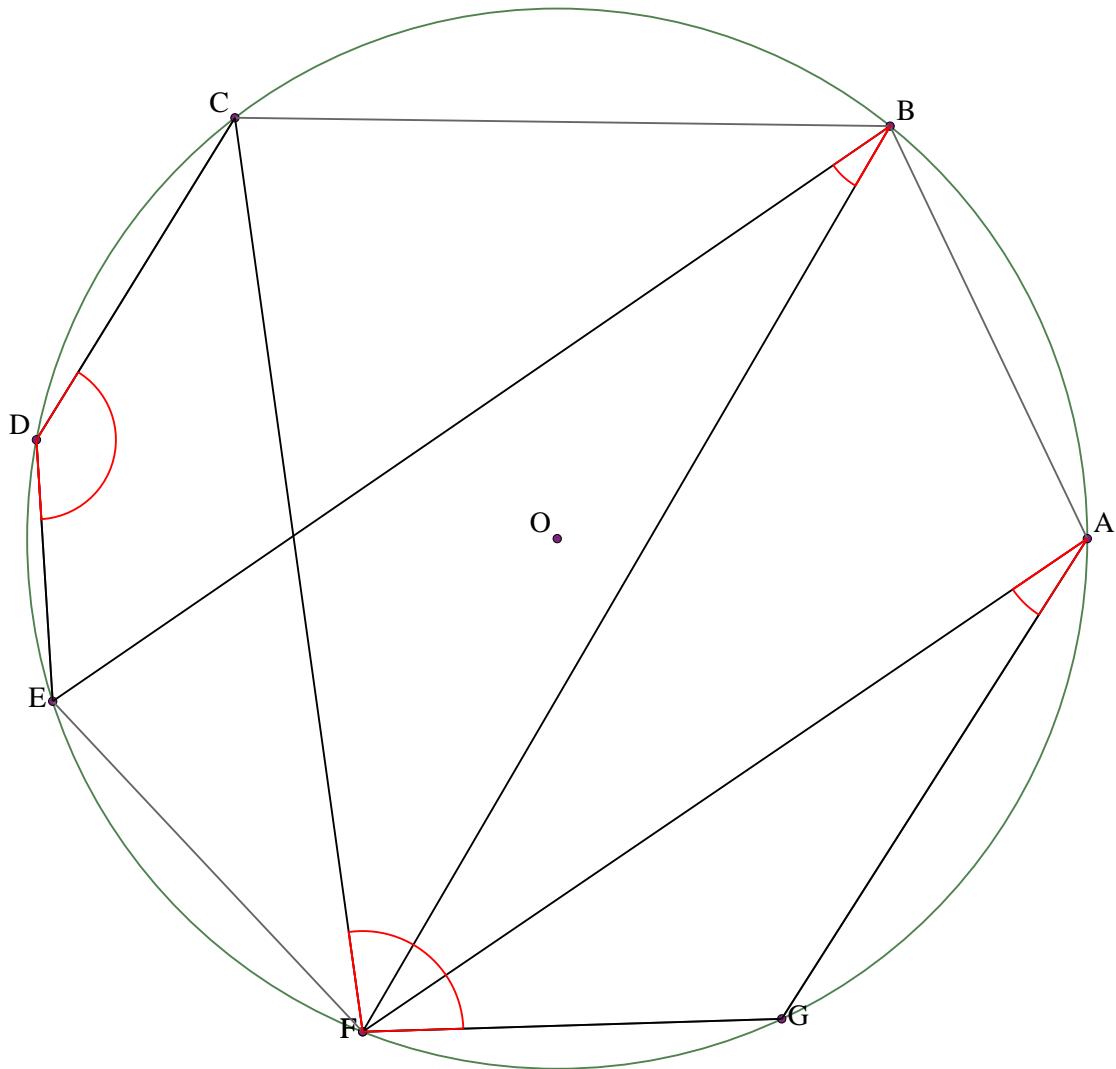


Let ABCDEF be a cyclic hexagon with center O.

Angle OEF = x . Angle FCB = y . Angle BFD = z .

Find angle DAE.

Example 24

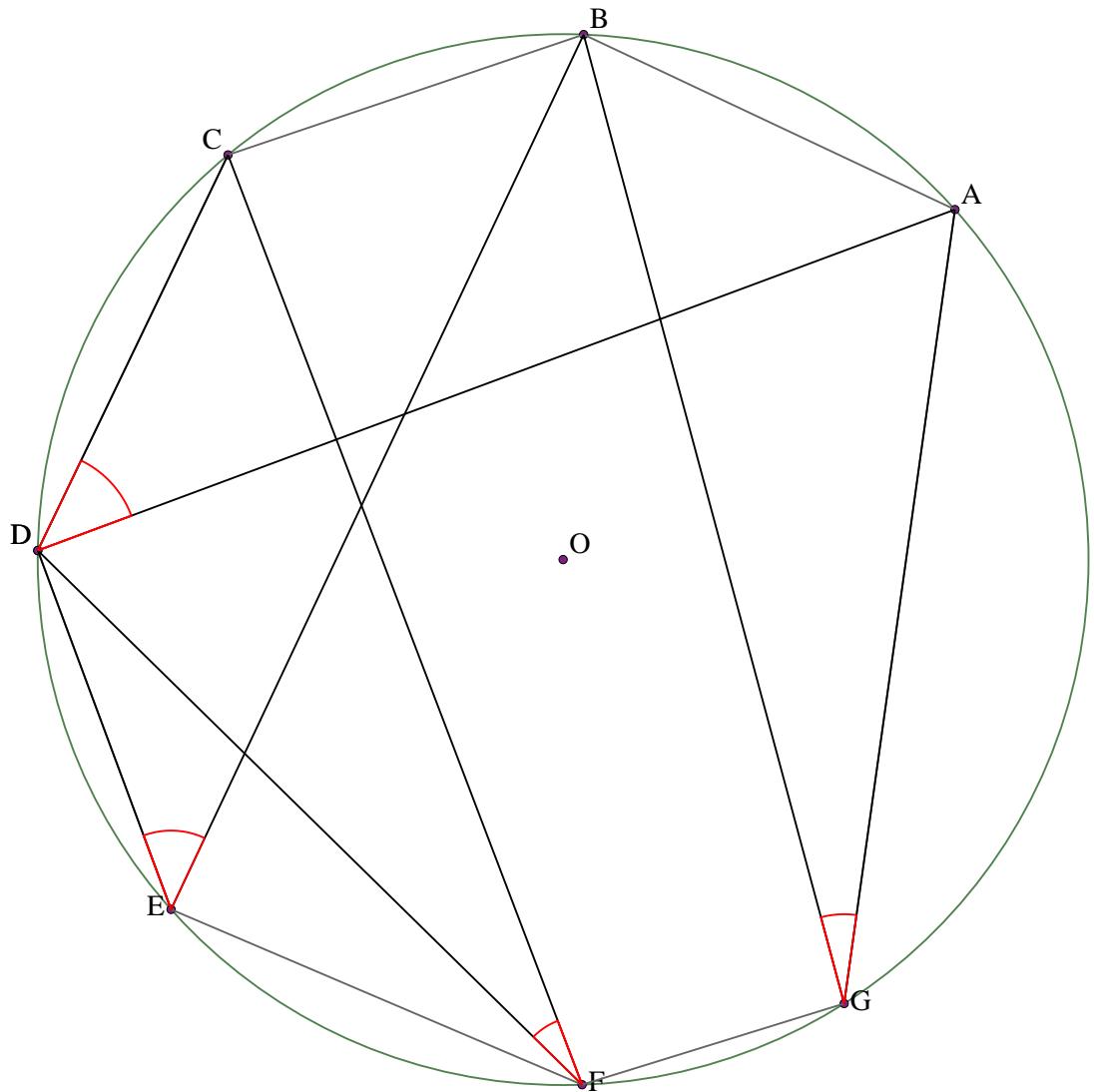


Let ABCDEFG be a cyclic heptagon with center O.

Angle EDC = x . Angle FBE = y . Angle FAG = z .

Find angle CFG.

Example 25

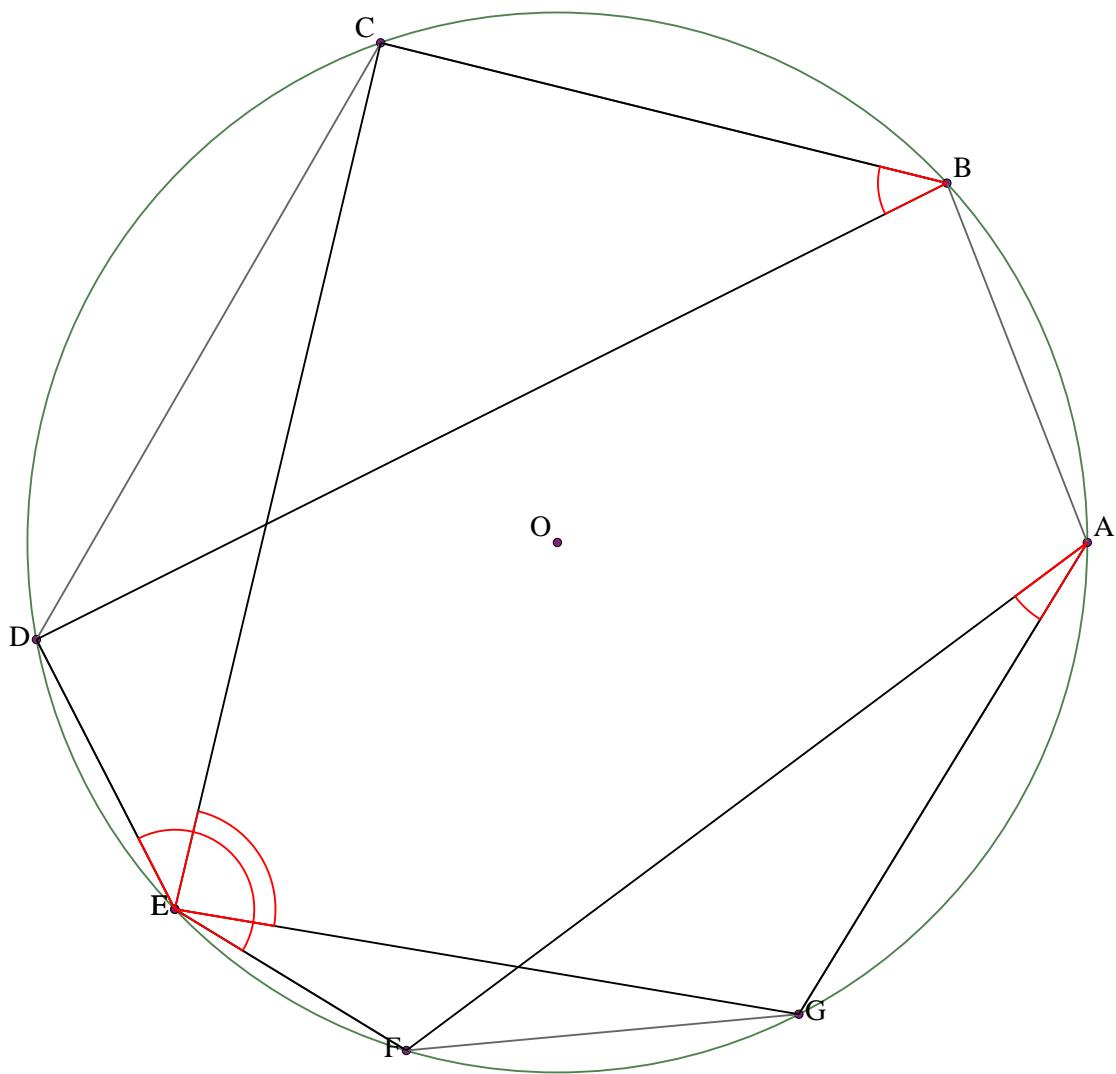


Let $ABCDEF$ be a cyclic heptagon with center O .

Angle $DEB = x$. Angle $BGA = y$. Angle $ADC = z$.

Find angle CFD .

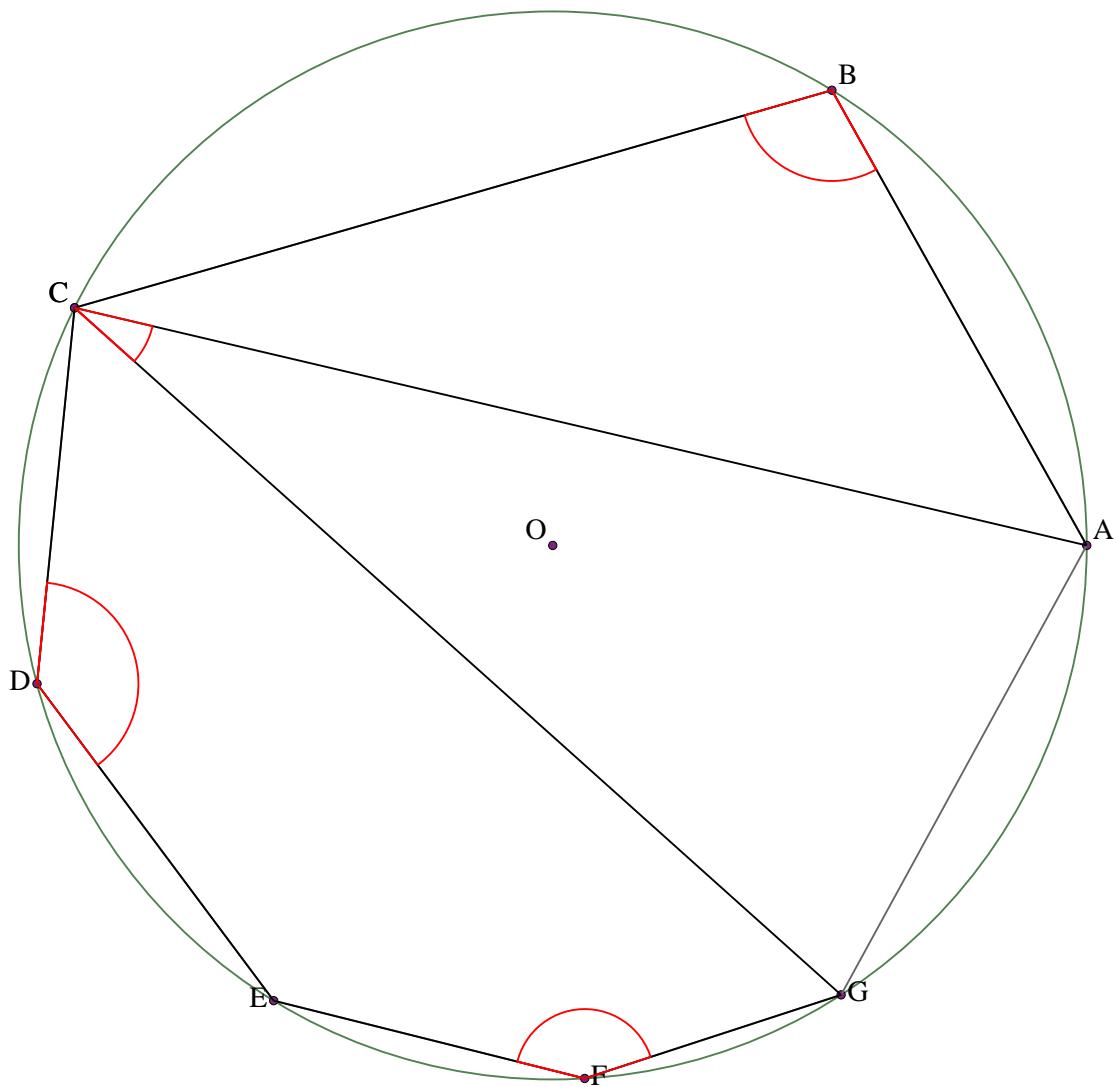
Example 26



Let $ABCDEFG$ be a cyclic heptagon with center O .

Prove that $\angle DEF = \angle CBD + \angle FAG + \angle CEG$

Example 27

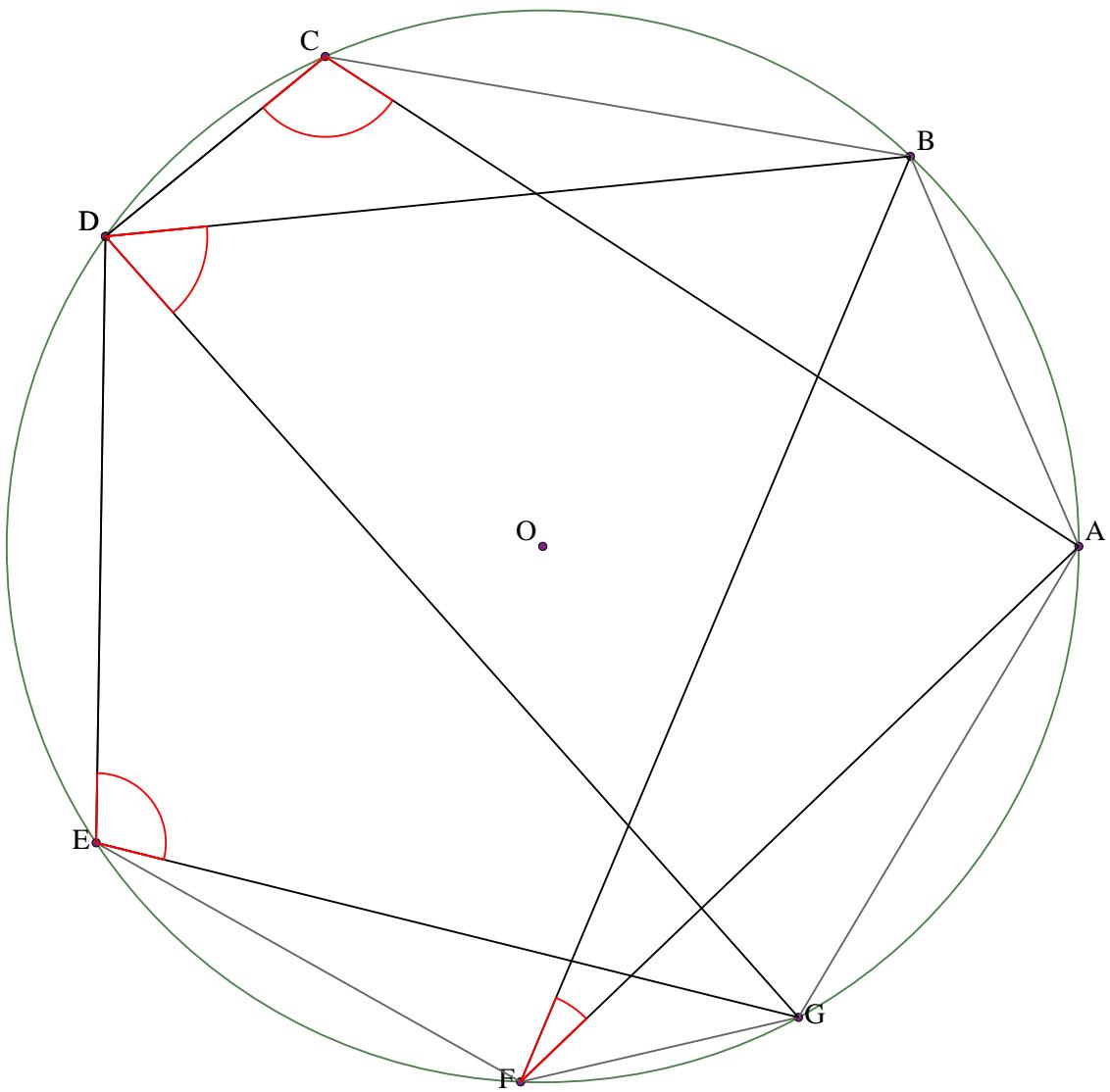


Let ABCDEFG be a cyclic heptagon with center O.

Angle EFG = x . Angle ABC = y . Angle CDE = z .

Find angle GCA.

Example 28

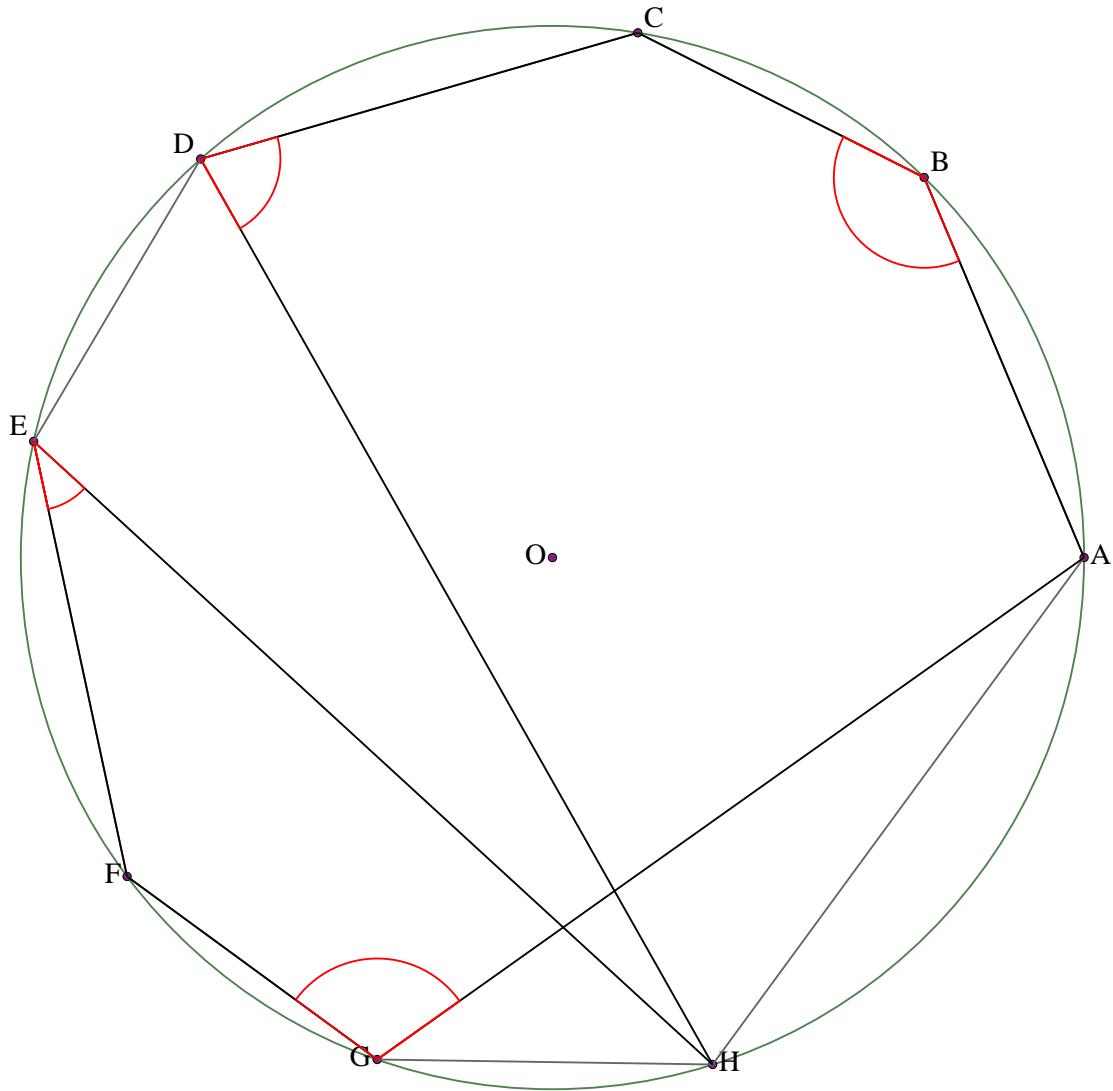


Let $ABCDEFG$ be a cyclic heptagon with center O .

Angle $BDG = 54^\circ$. Angle $DCA = 108^\circ$. Angle $AFB = 23^\circ$.

Find angle GED .

Example 29

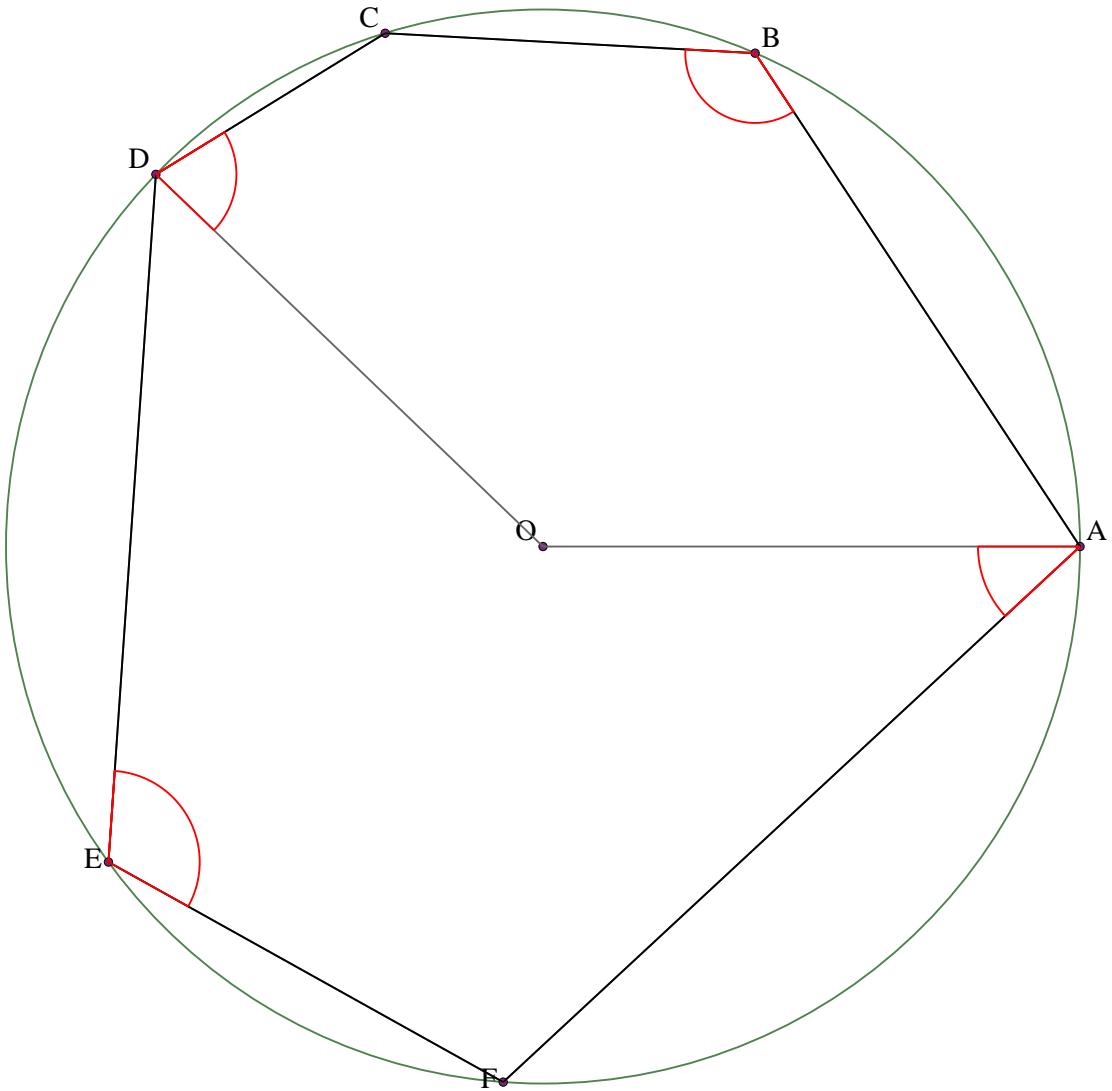


Let ABCDEFGH be a cyclic octagon with center O.

Angle $HDC = 77^\circ$. Angle $CBA = 140^\circ$. Angle $AGF = 108^\circ$.

Find angle FEH .

Example 30

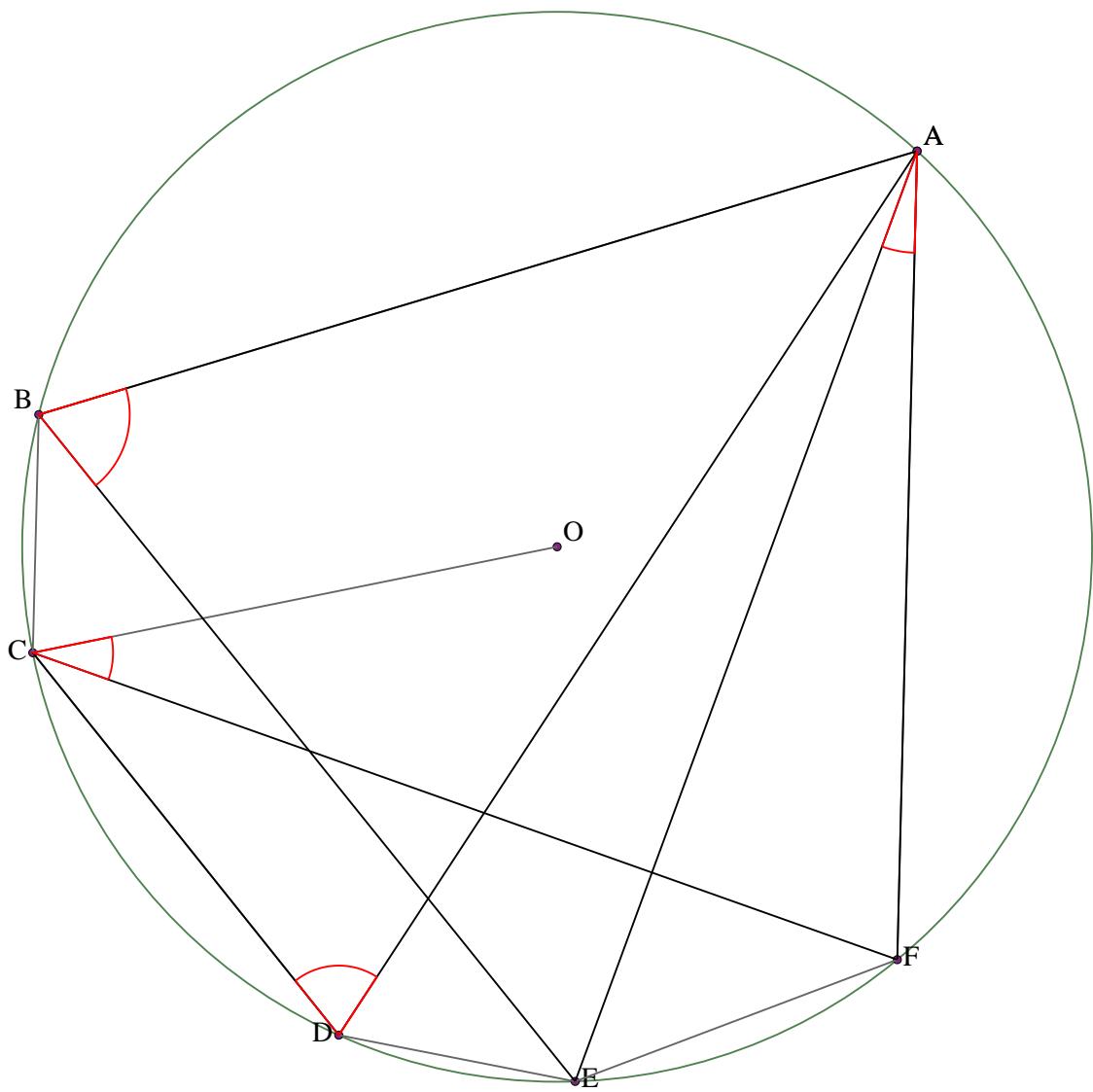


Let ABCDEF be a cyclic hexagon with center O.

Angle ABC = x. Angle CDO = y. Angle FAO = z.

Find angle DEF.

Example 31

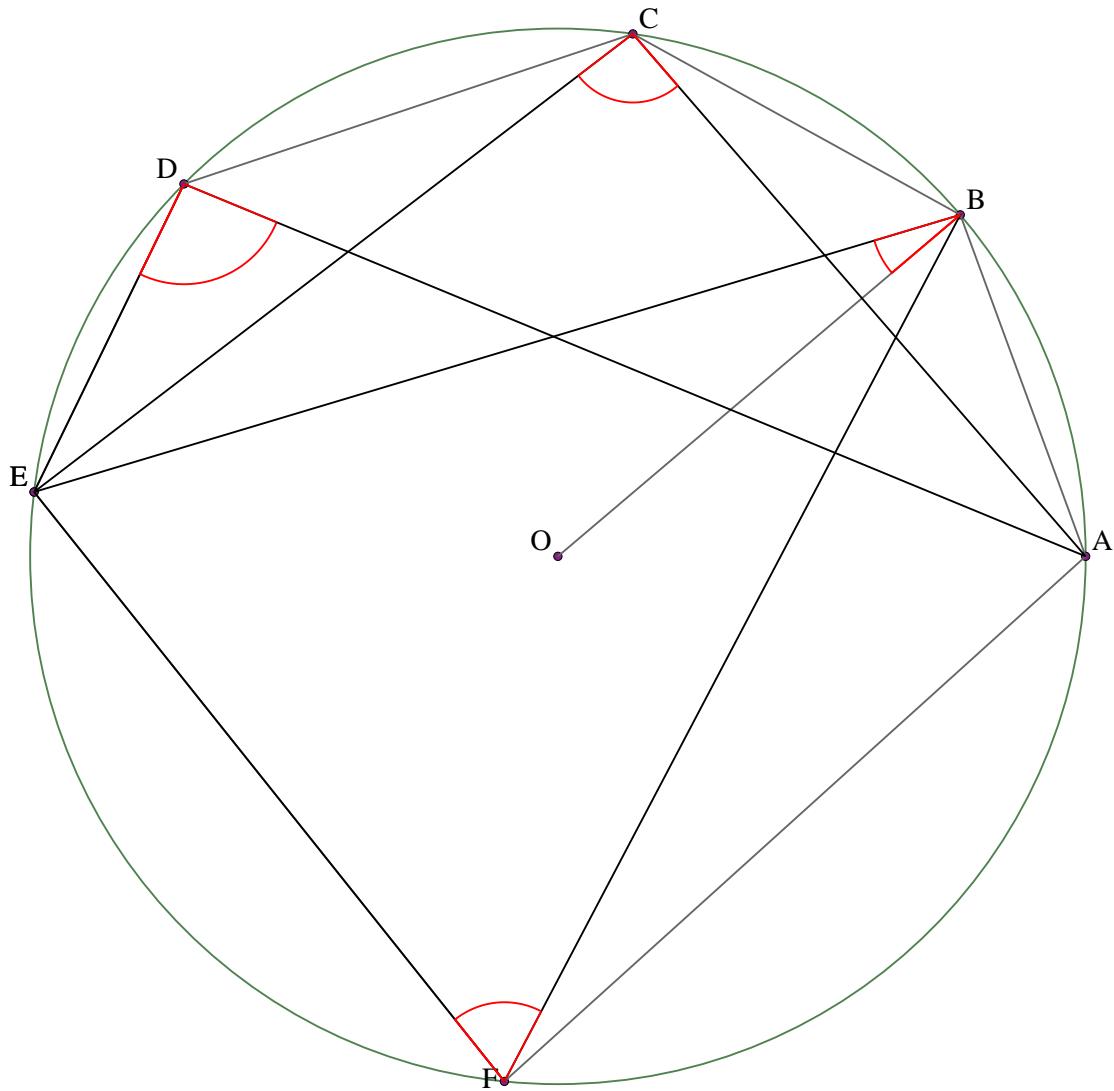


Let ABCDEF be a cyclic hexagon with center O.

Angle $ADC = 72^\circ$. Angle $ABE = 68^\circ$. Angle $OCF = 31^\circ$.

Find angle FAE .

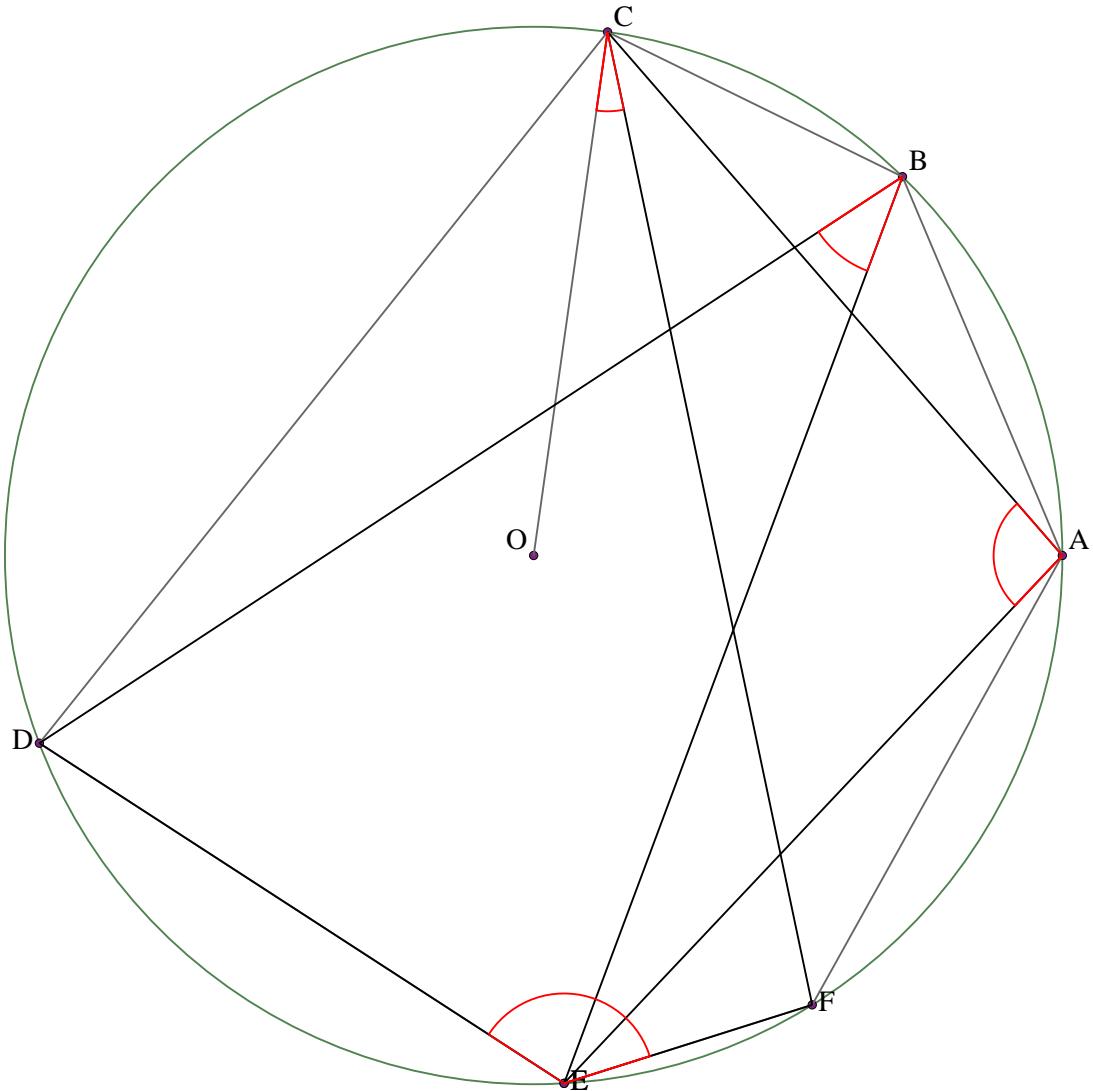
Example 32



Let ABCDEF be a cyclic hexagon with center O.

Prove that $ACE + BFE + EBO = ADE + 90$

Example 33

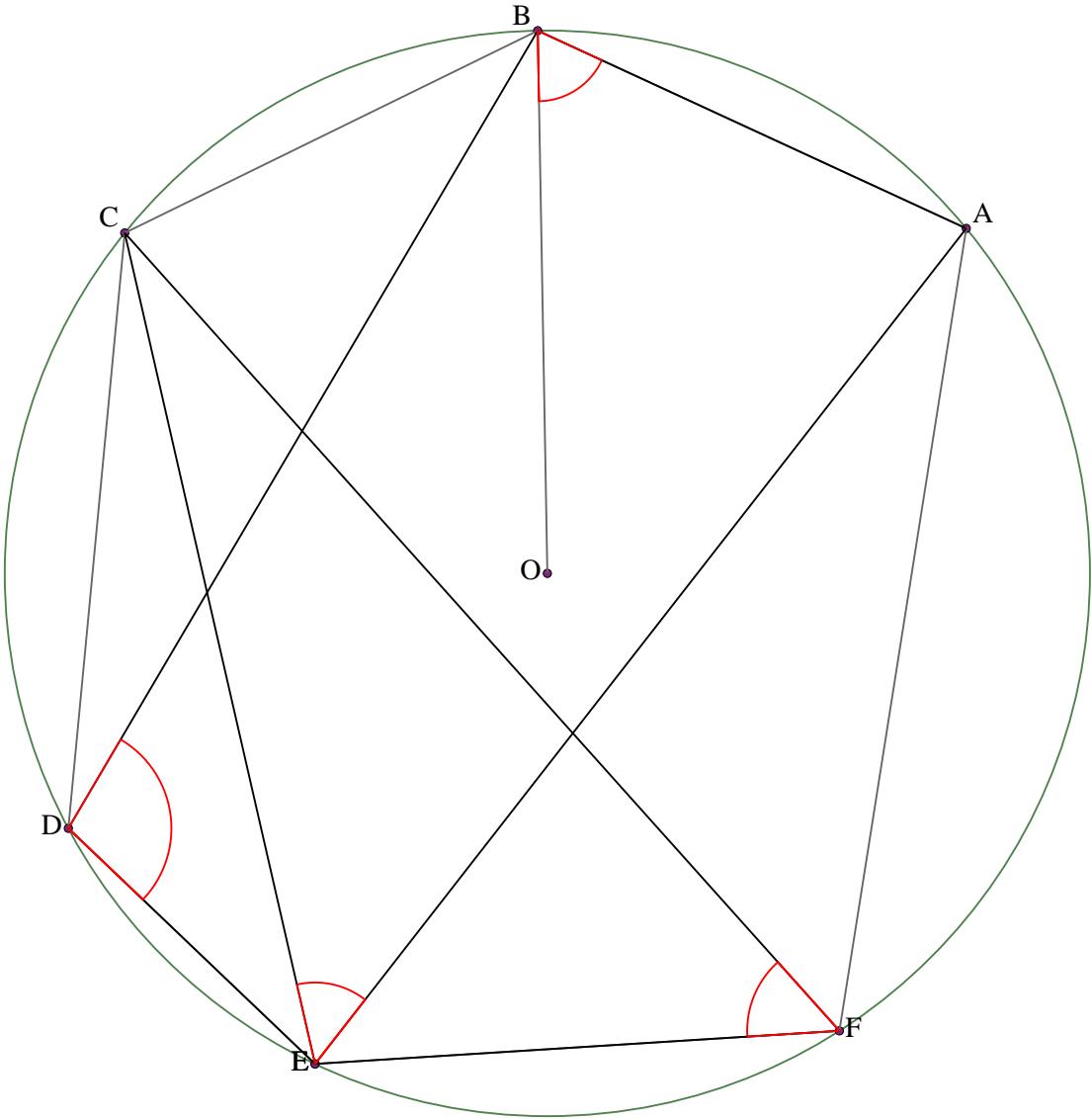


Let ABCDEF be a cyclic hexagon with center O.

Angle EAC = x . Angle OCF = y . Angle FED = z .

Find angle DBE.

Example 34

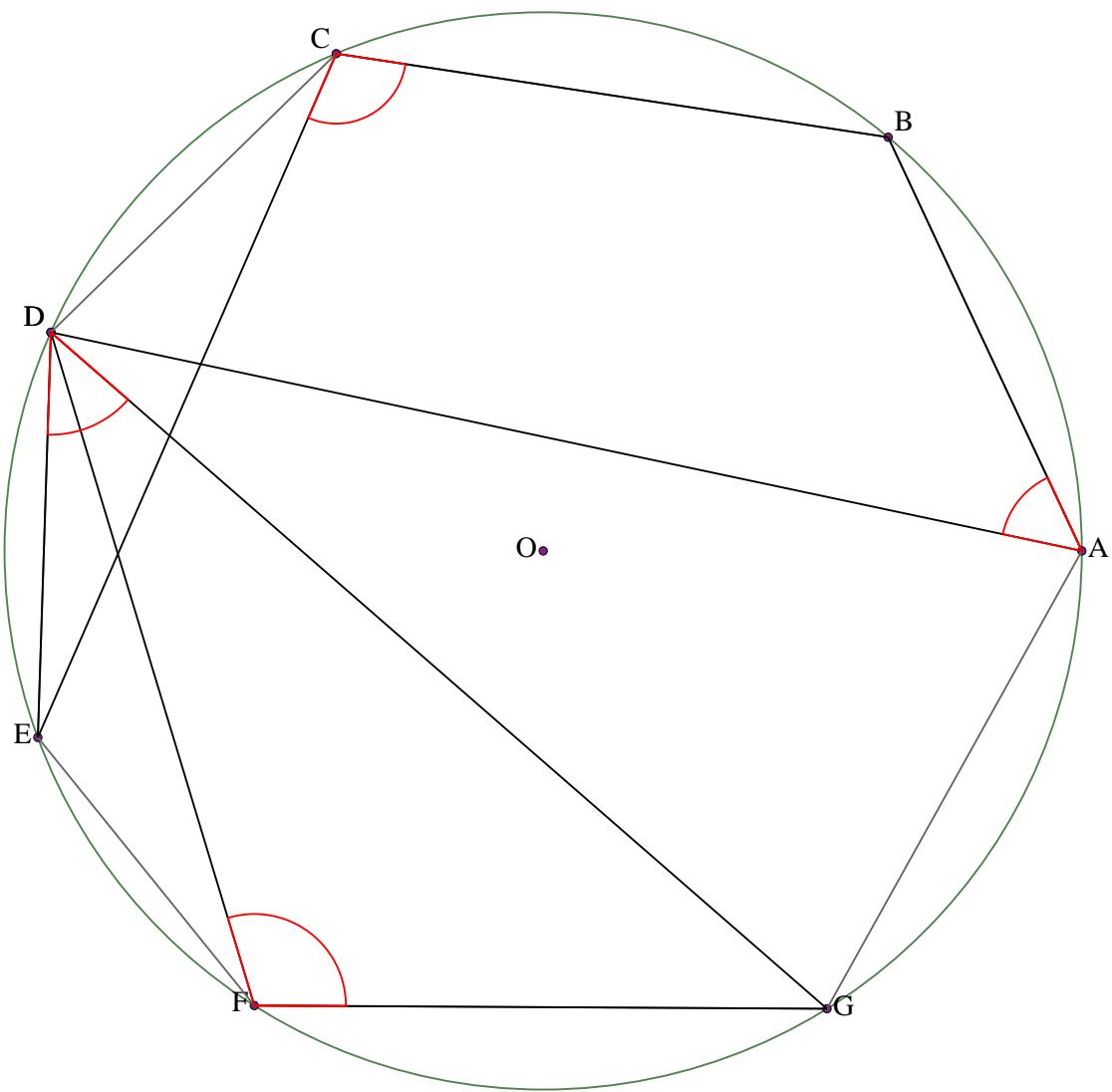


Let ABCDEF be a cyclic hexagon with center O.

Angle OBA = 64° . Angle AEC = 51° . Angle EDB = 103° .

Find angle CFE.

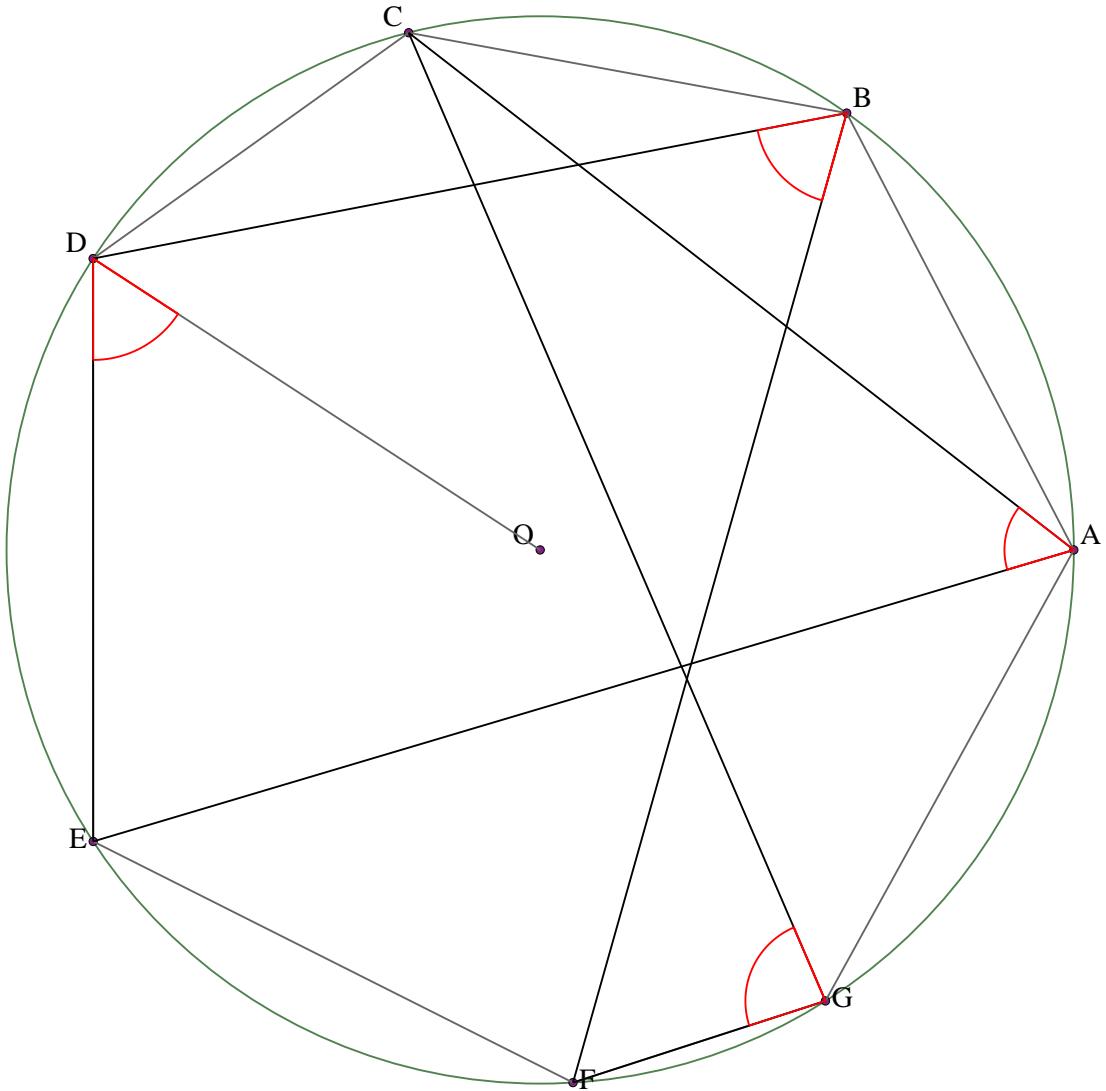
Example 35



Let $ABCDEFG$ be a cyclic heptagon with center O .

Prove that $DFG + EDG = BCE + BAD$

Example 36

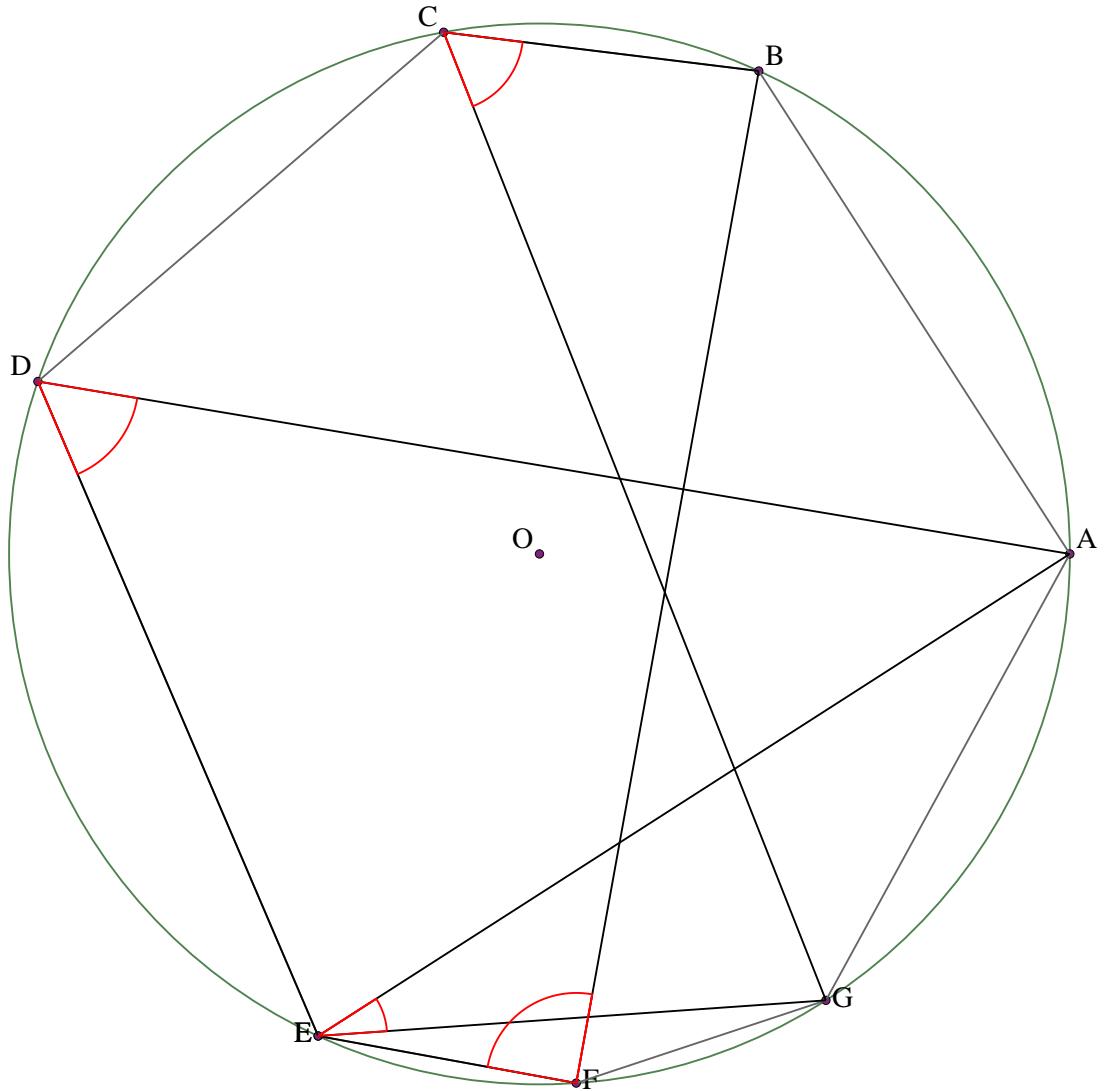


Let ABCDEFG be a cyclic heptagon with center O.

Angle CGF = 85° . Angle FBD = 63° . Angle ODE = 57° .

Find angle EAC.

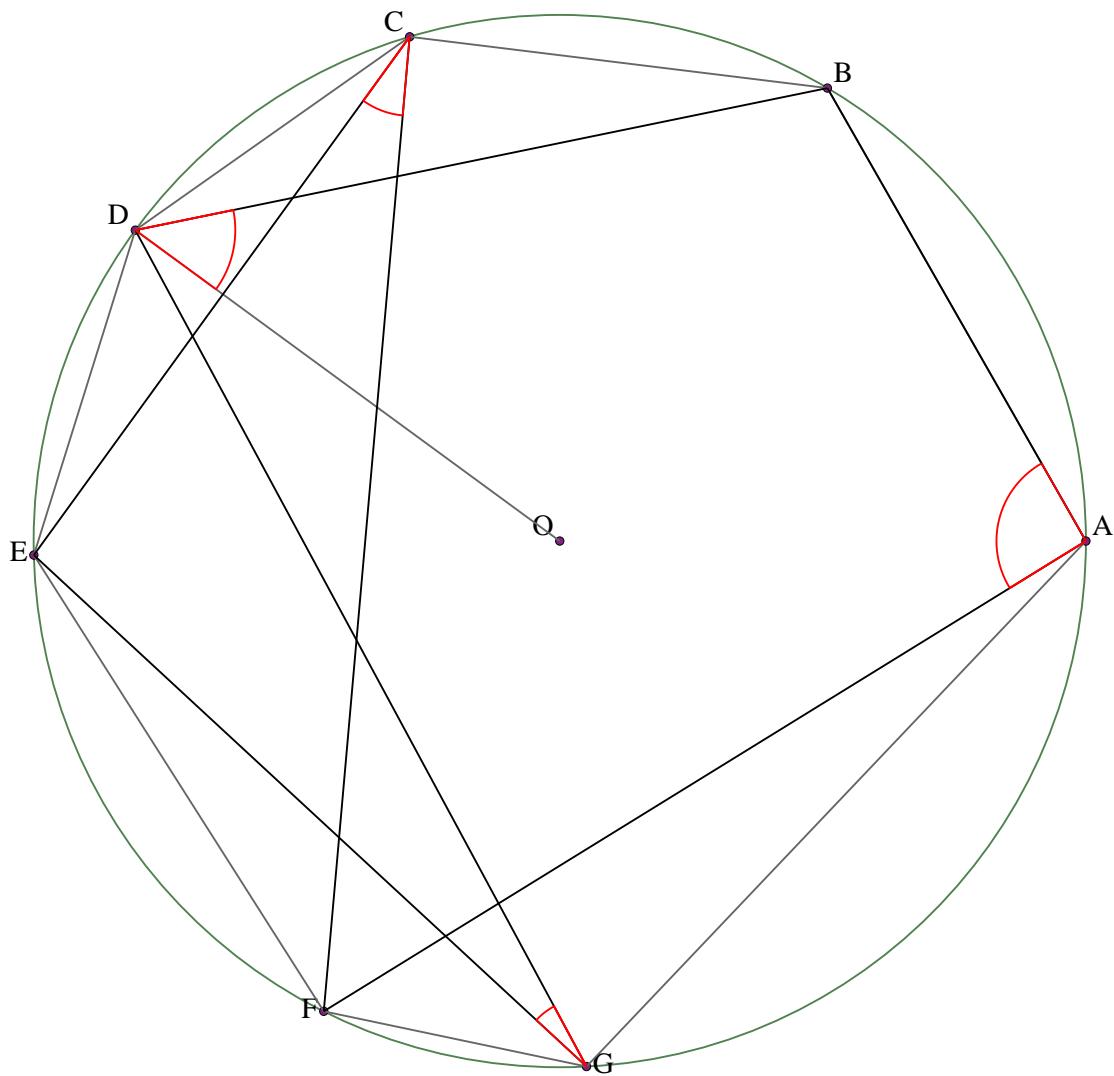
Example 37



Let ABCDEFG be a cyclic heptagon with center O.

Prove that $BCG + BFE + ADE = AEG + 180$

Example 38

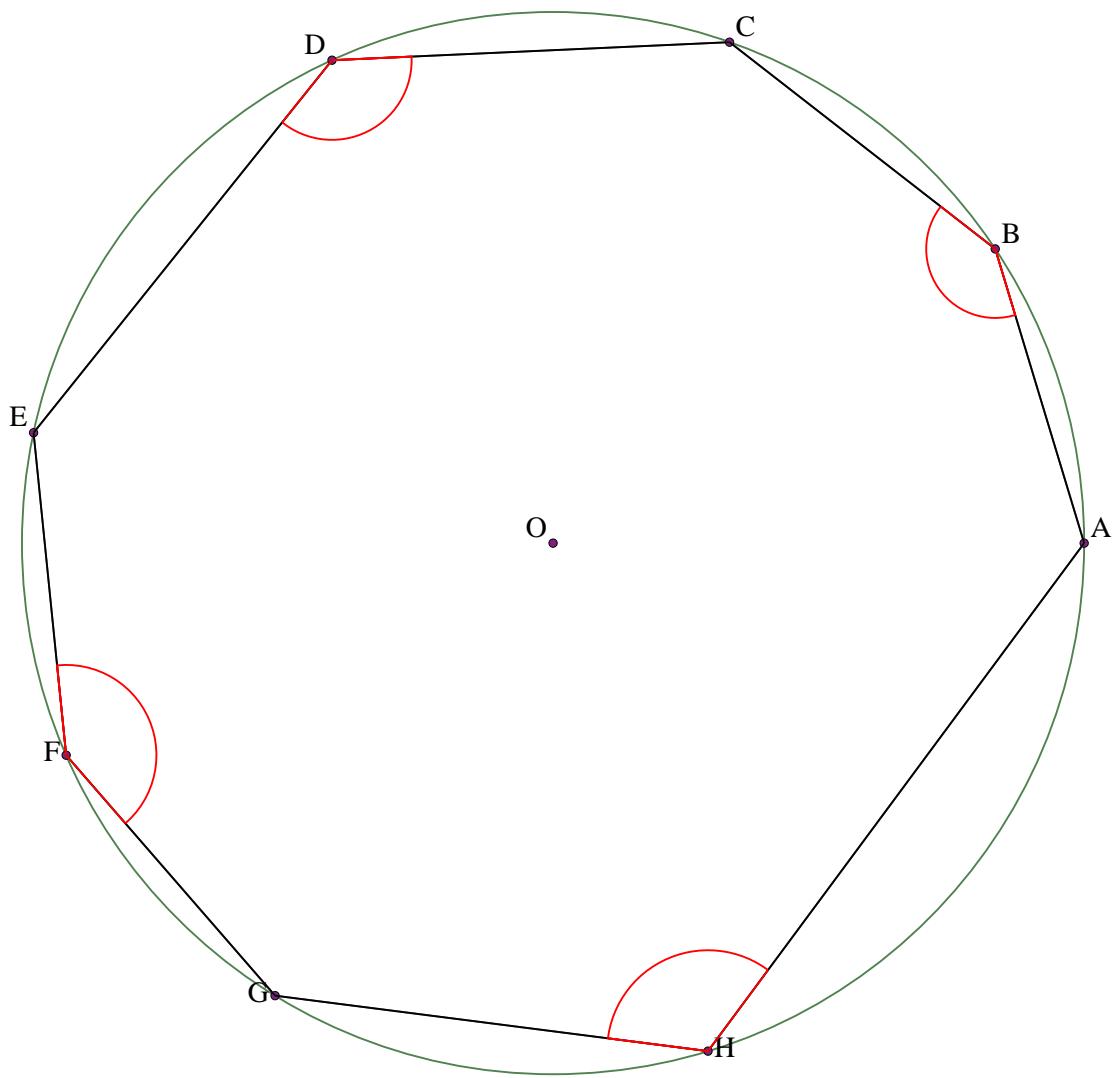


Let $ABCDEFG$ be a cyclic heptagon with center O .

Angle $DGE = 19^\circ$. Angle $ECF = 31^\circ$. Angle $FAB = 92^\circ$.

Find angle BDO .

Example 39

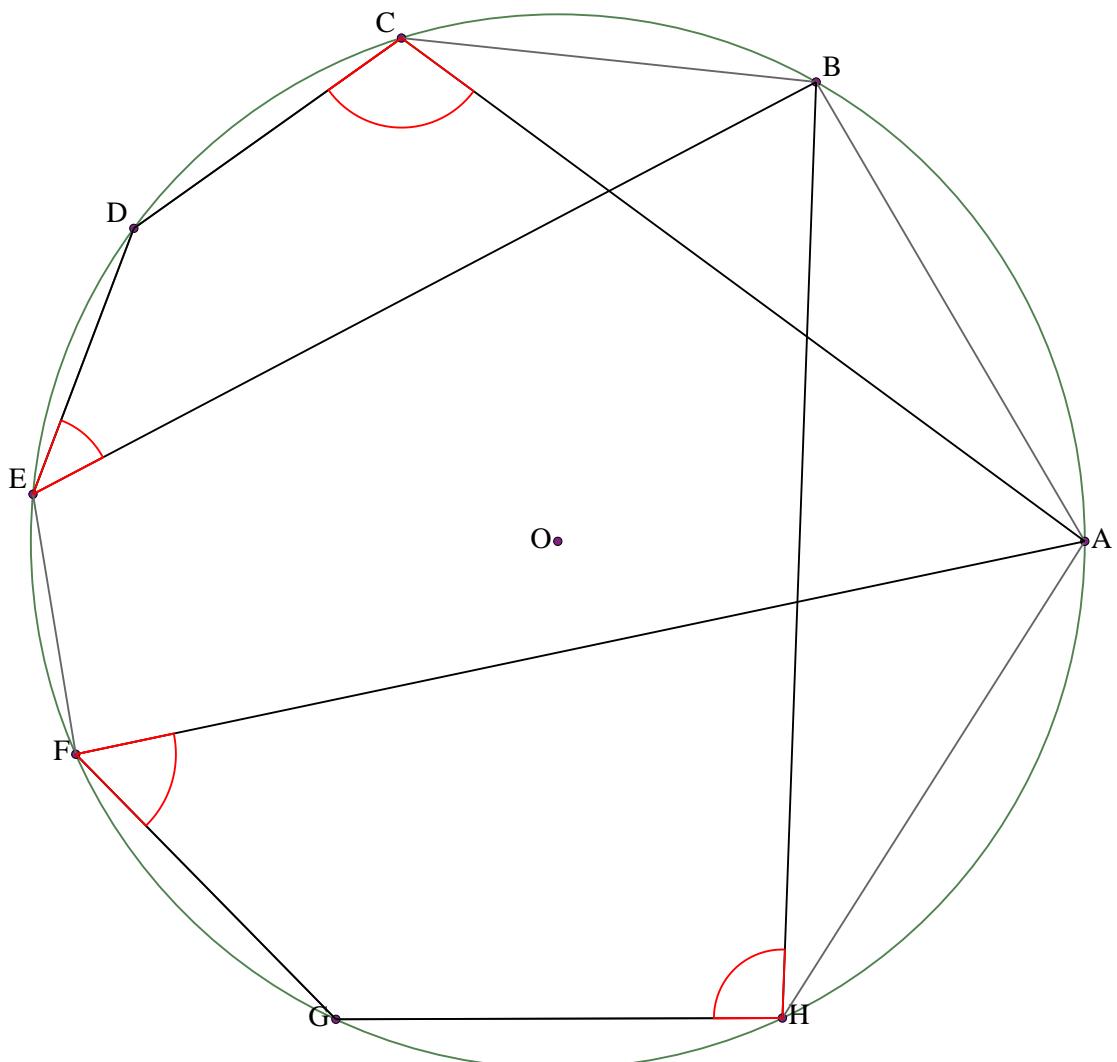


Let $ABCDEFGH$ be a cyclic octagon with center O .

Angle $ABC = 145^\circ$. Angle $CDE = 131^\circ$. Angle $EFG = 145^\circ$.

Find angle GHA .

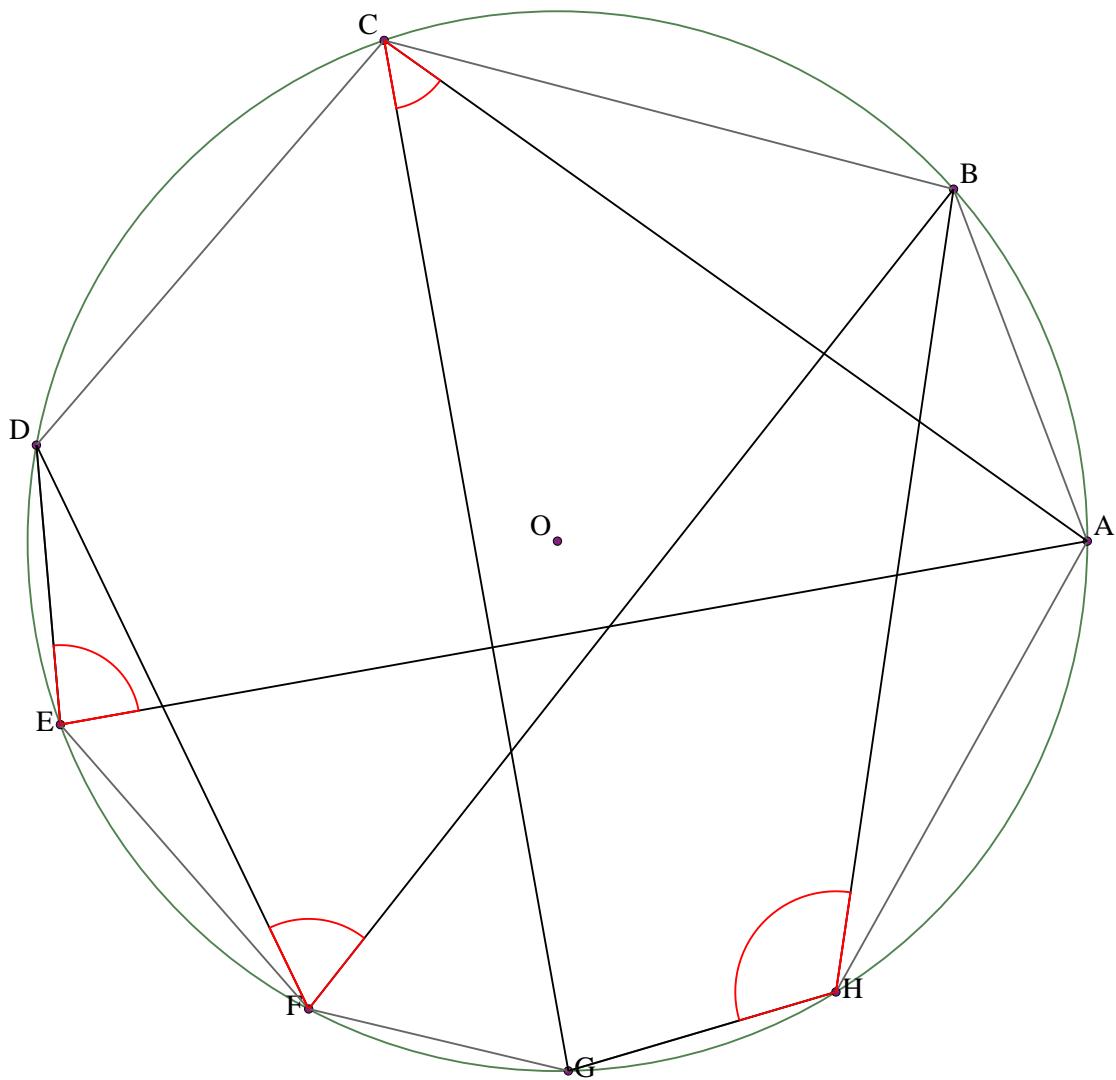
Example 40



Let $ABCDEFGH$ be a cyclic octagon with center O .

Prove that $BHG + AFG = BED + ACD$

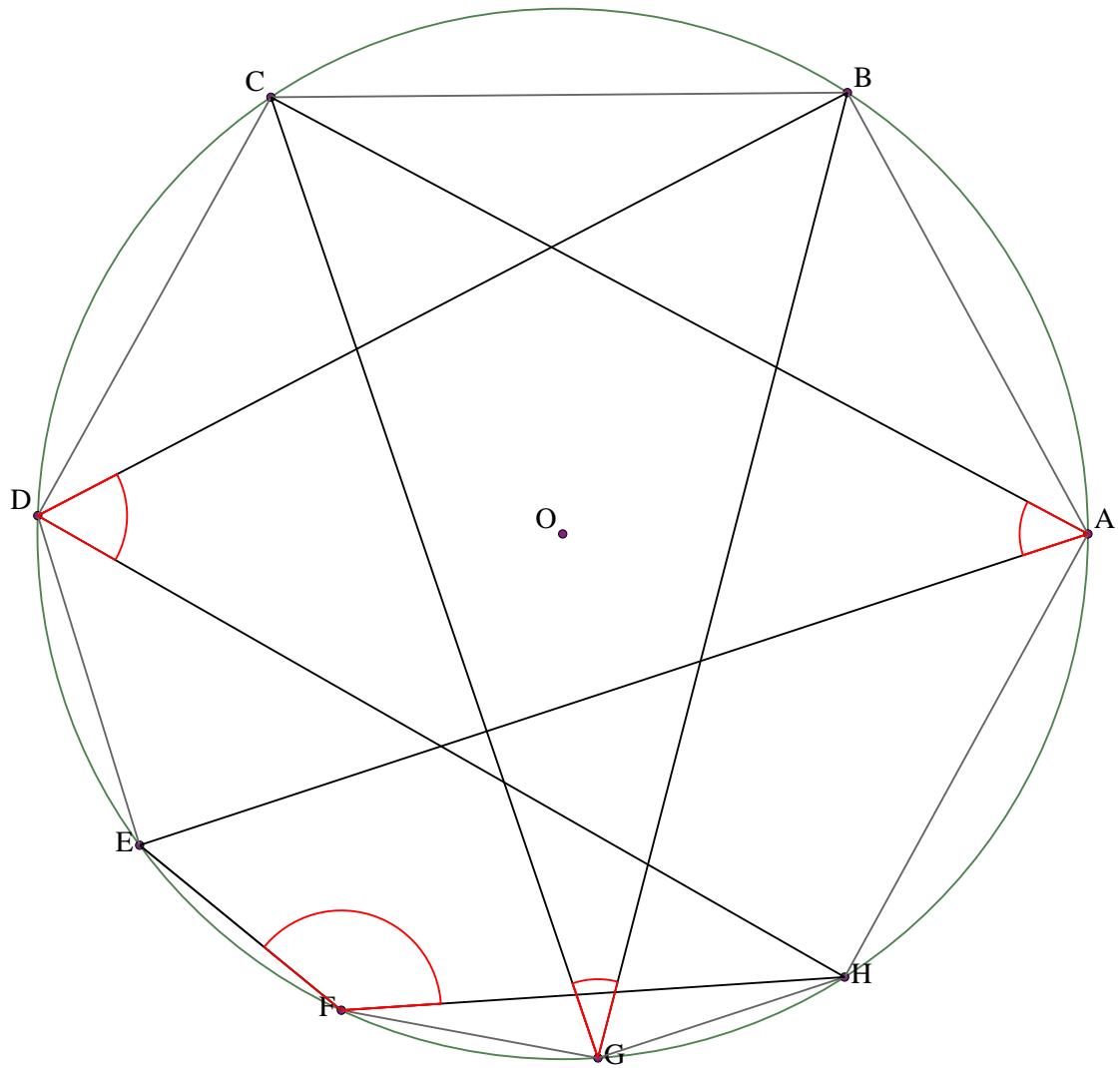
Example 41



Let ABCDEFGH be a cyclic octagon with center O.

Prove that $ACG + AED + BHG = BFD + 180$

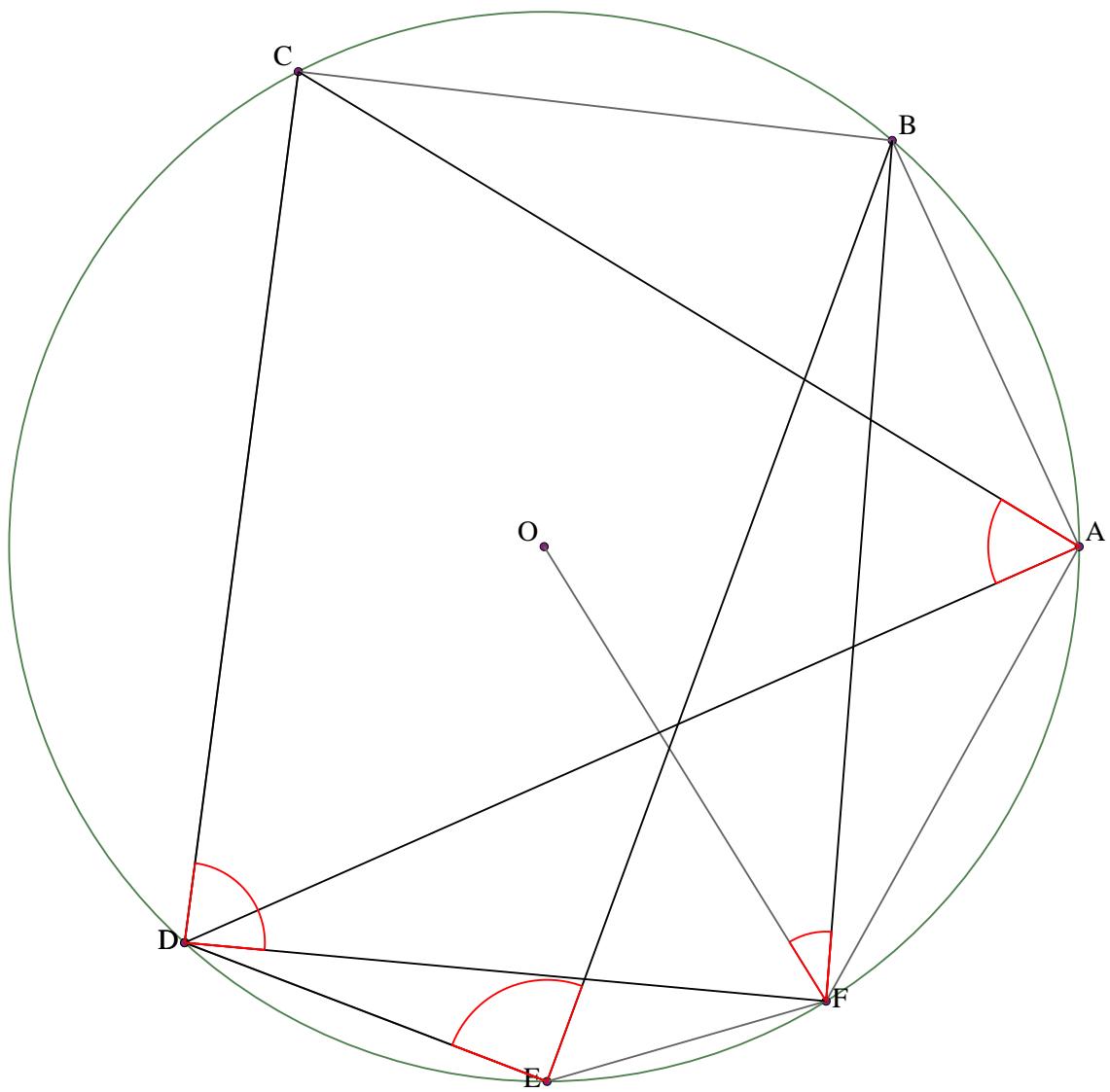
Example 42



Let ABCDEFGH be a cyclic octagon with center O.

Prove that $\angle CAE + \angle BGC + \angle BDH = \angle EFH$

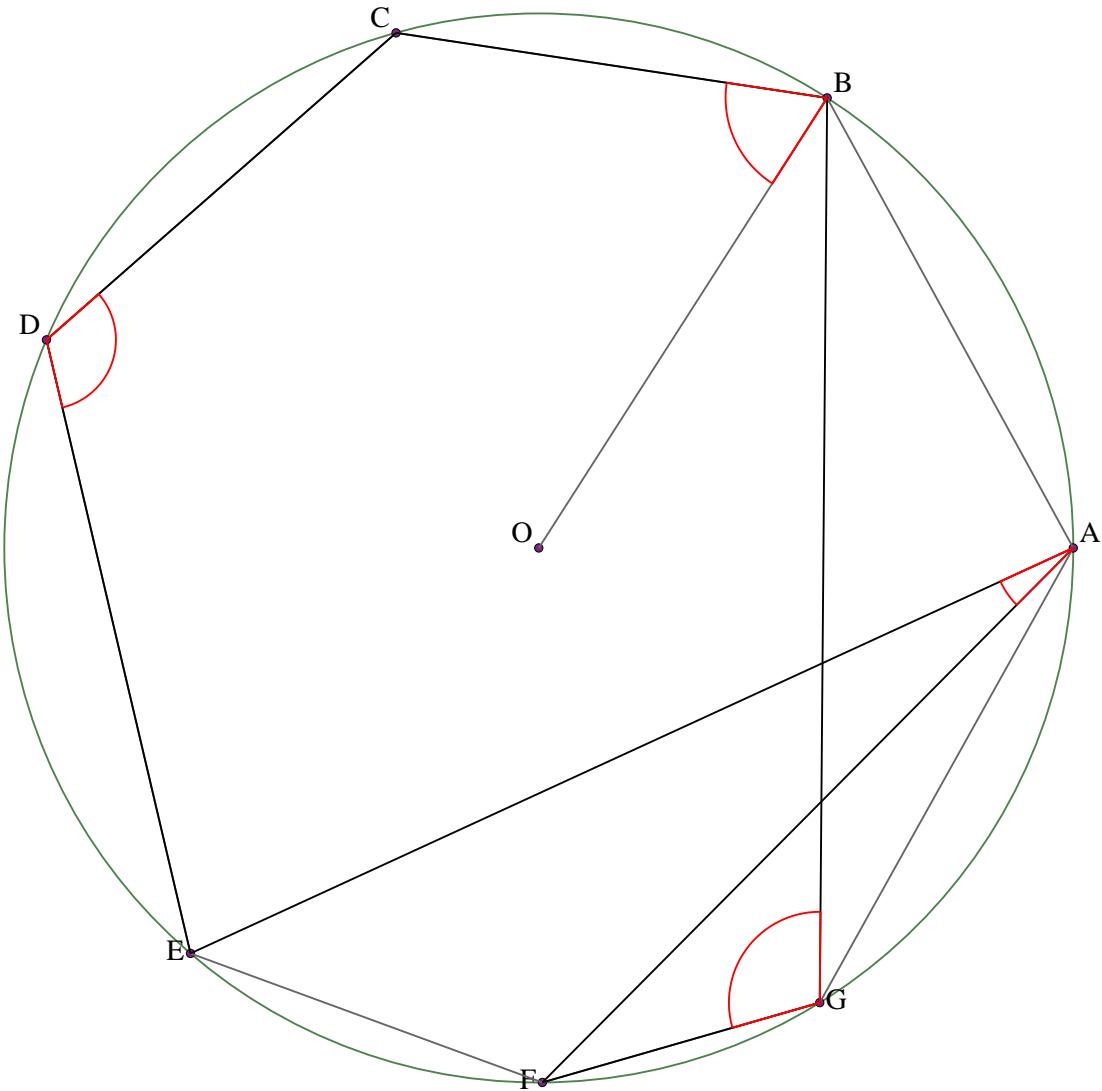
Example 43



Let ABCDEF be a cyclic hexagon with center O.

Prove that $BFO + CDF + CAD = BED + 90$

Example 44

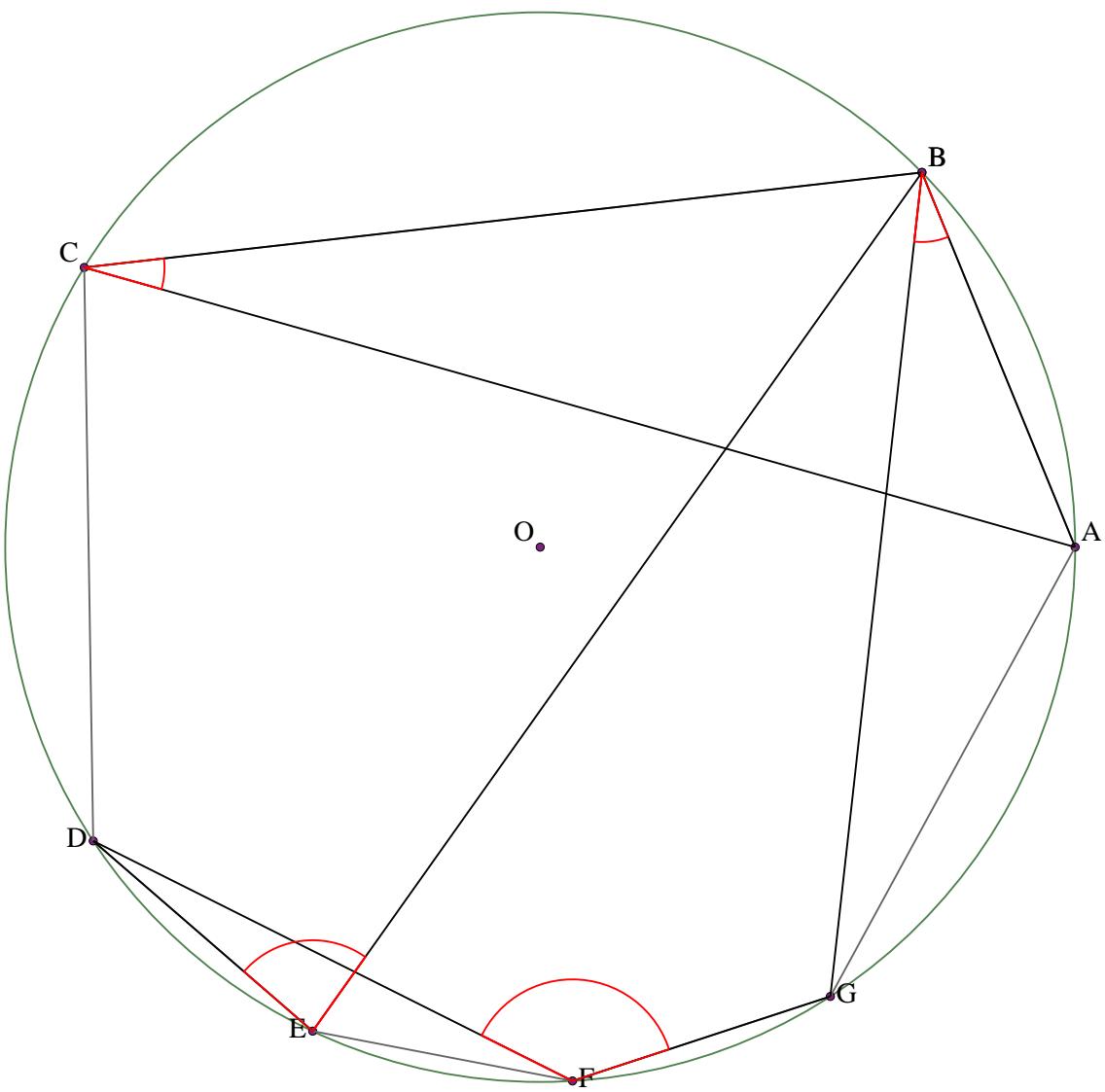


Let ABCDEFG be a cyclic heptagon with center O.

Angle EAF = x . Angle CDE = y . Angle FGB = z .

Find angle OBC.

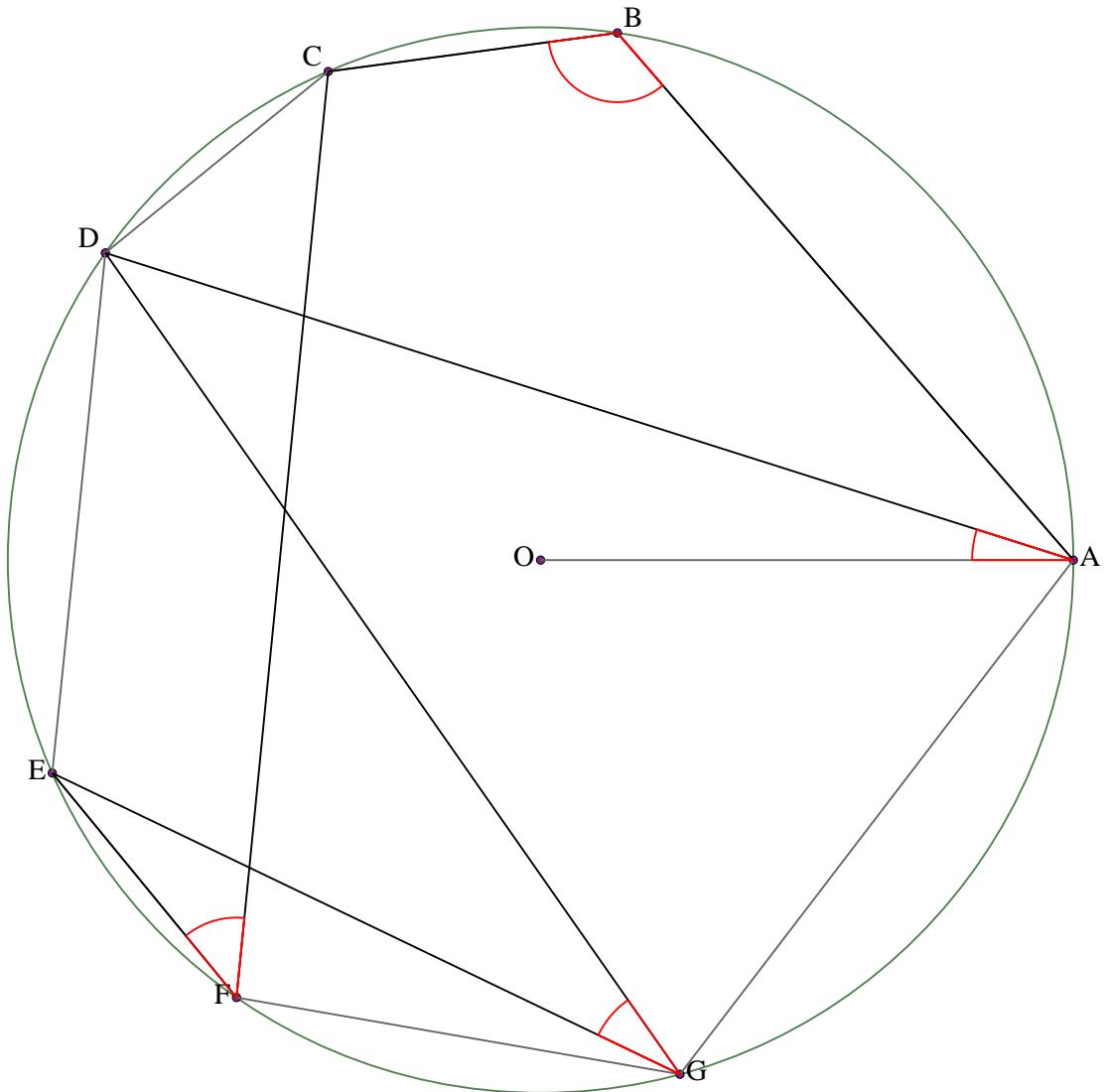
Example 45



Let $ABCDEFG$ be a cyclic heptagon with center O .

Prove that $DFG = ABG + ACB + BED$

Example 46

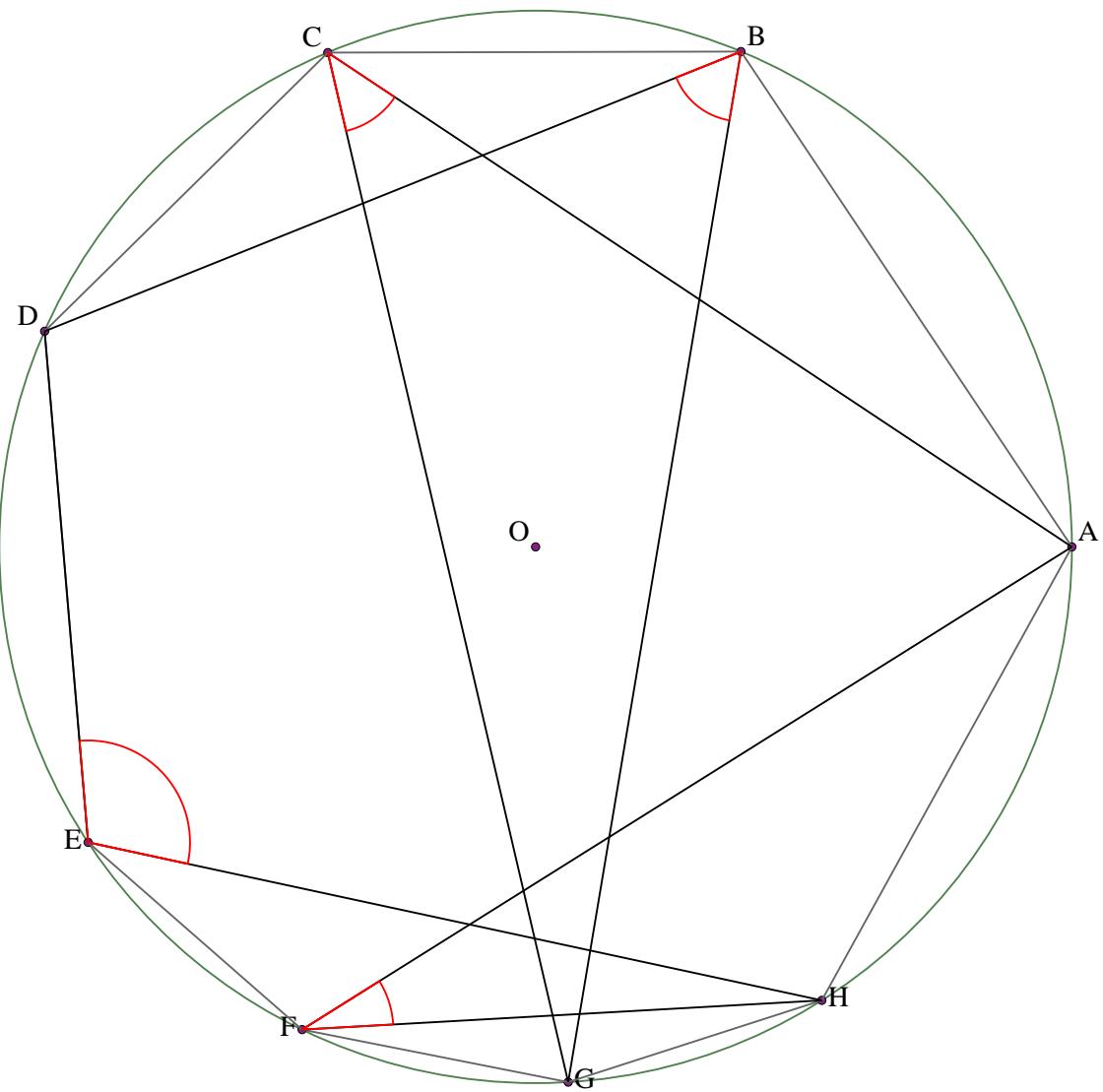


Let ABCDEFG be a cyclic heptagon with center O.

Angle ABC = x . Angle EGD = y . Angle CFE = z .

Find angle DAO.

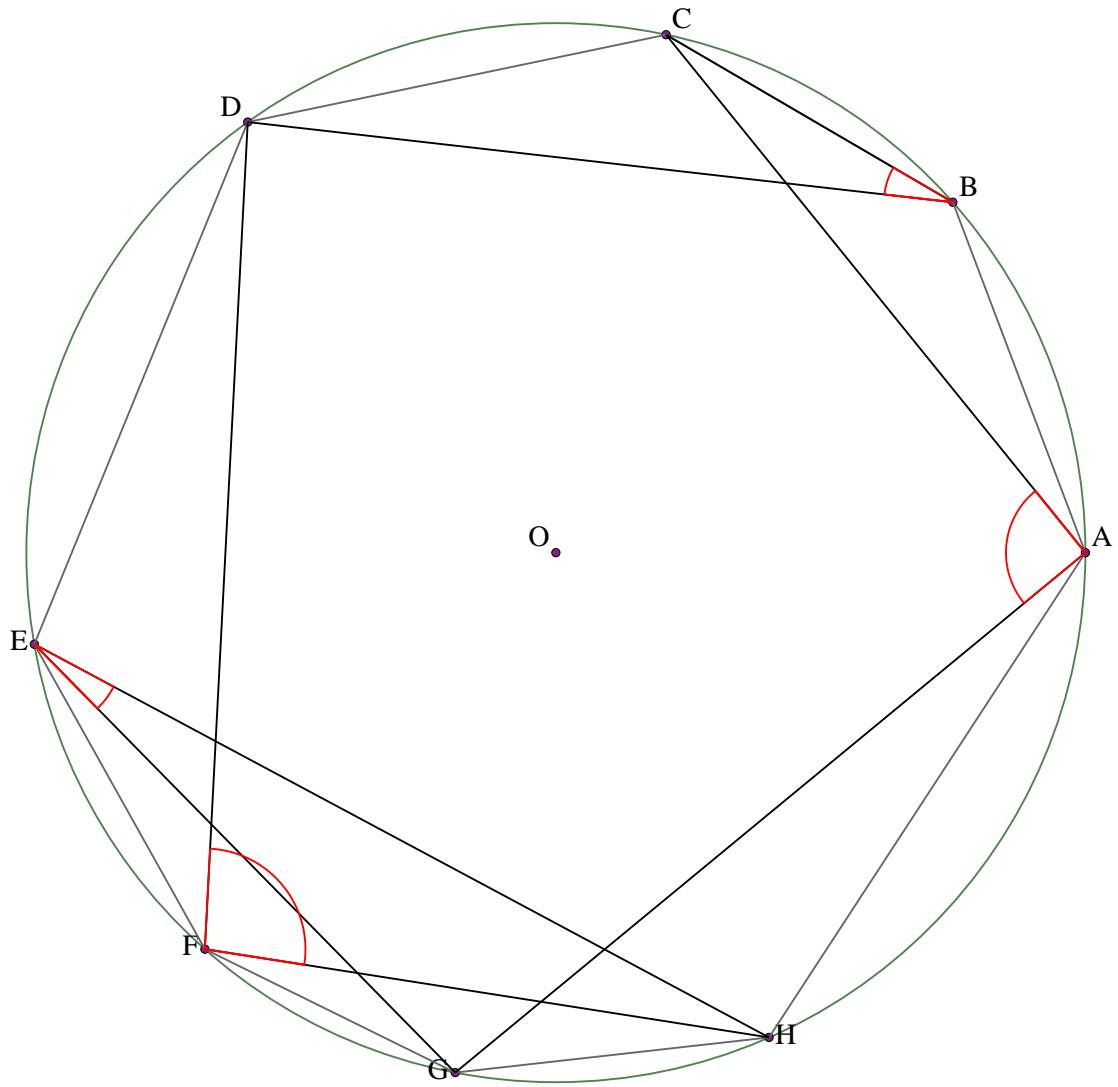
Example 47



Let ABCDEFGH be a cyclic octagon with center O.

Prove that $DBG + ACG + DEH = AFH + 180$

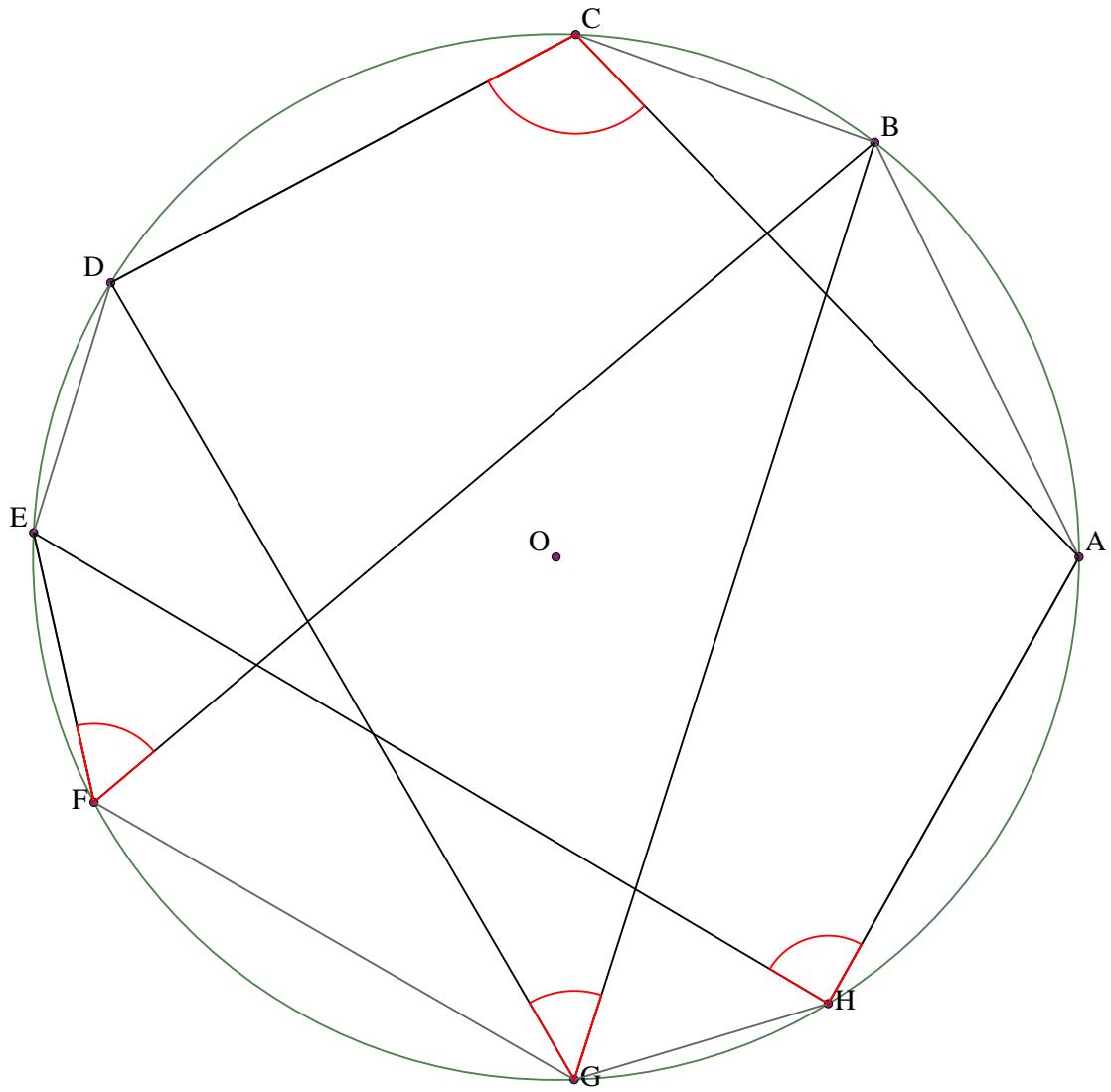
Example 48



Let $ABCDEFGH$ be a cyclic octagon with center O .

Prove that $CAG + GEH + DFH = CBD + 180$

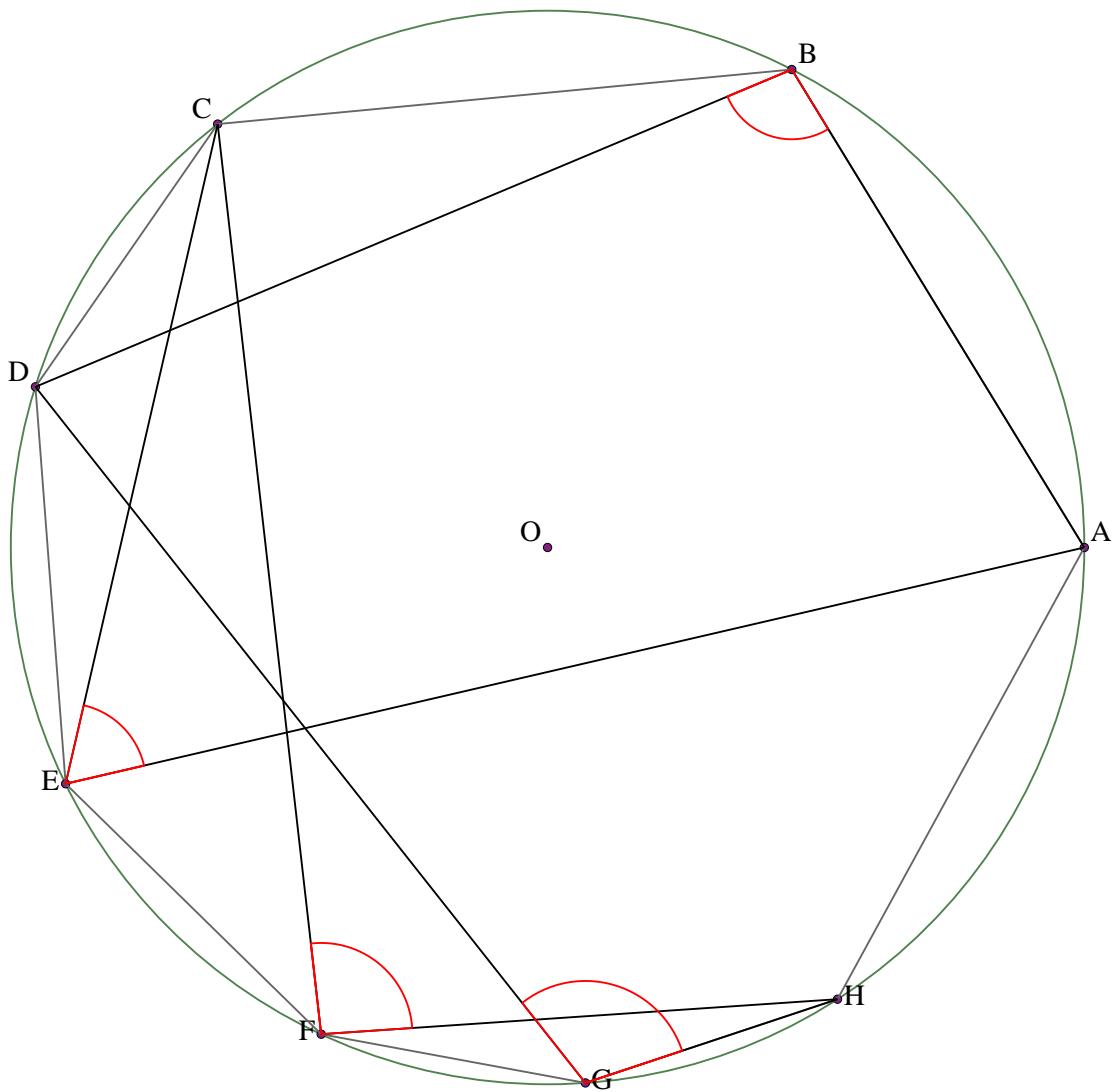
Example 49



Let ABCDEFGH be a cyclic octagon with center O.

Prove that $AHE + BGD + ACD = BFE + 180$

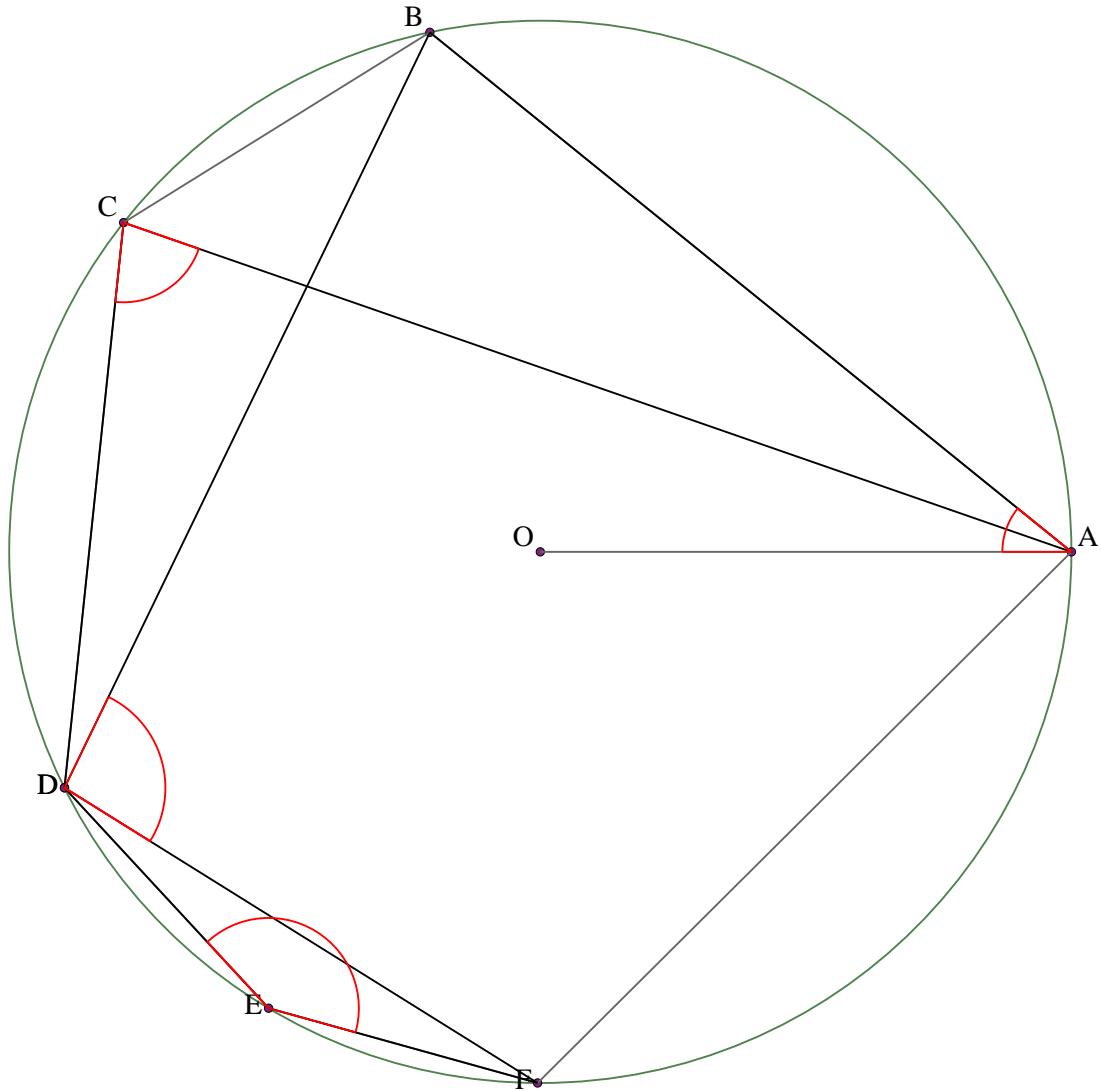
Example 50



Let ABCDEFGH be a cyclic octagon with center O.

Prove that $ABD + AEC + DGH = CFH + 180$

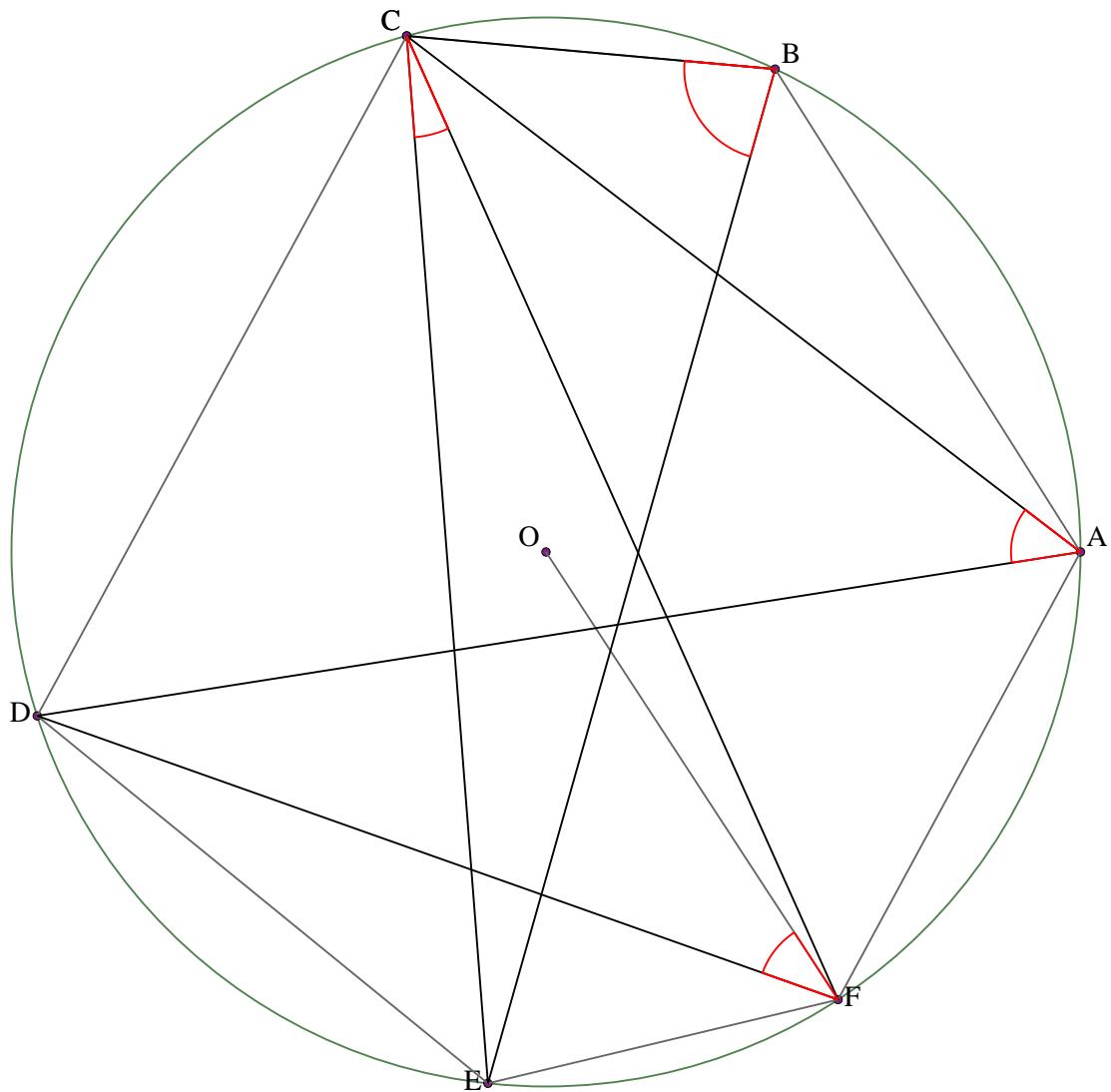
Example 51



Let ABCDEF be a cyclic hexagon with center O.

Prove that $ACD + DEF = BAO + BDF + 90^\circ$

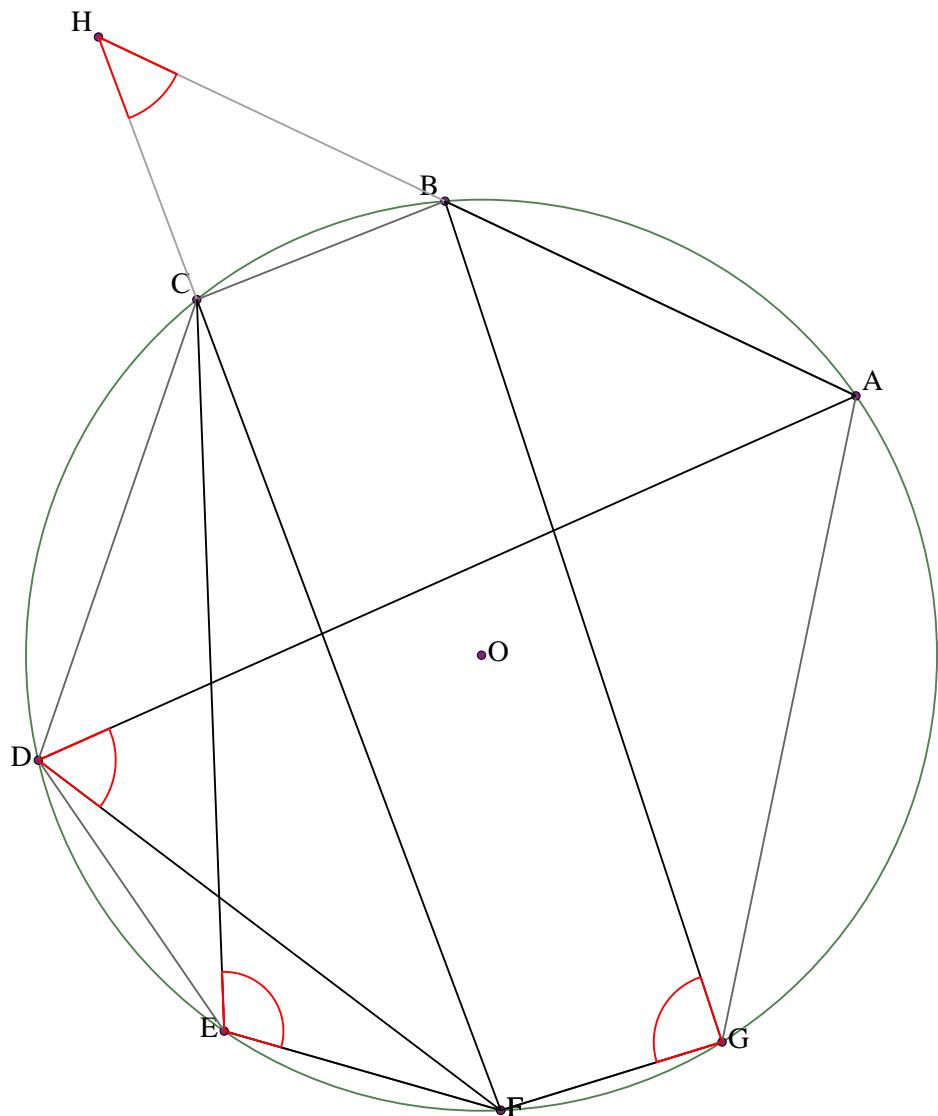
Example 52



Let ABCDEF be a cyclic hexagon with center O.

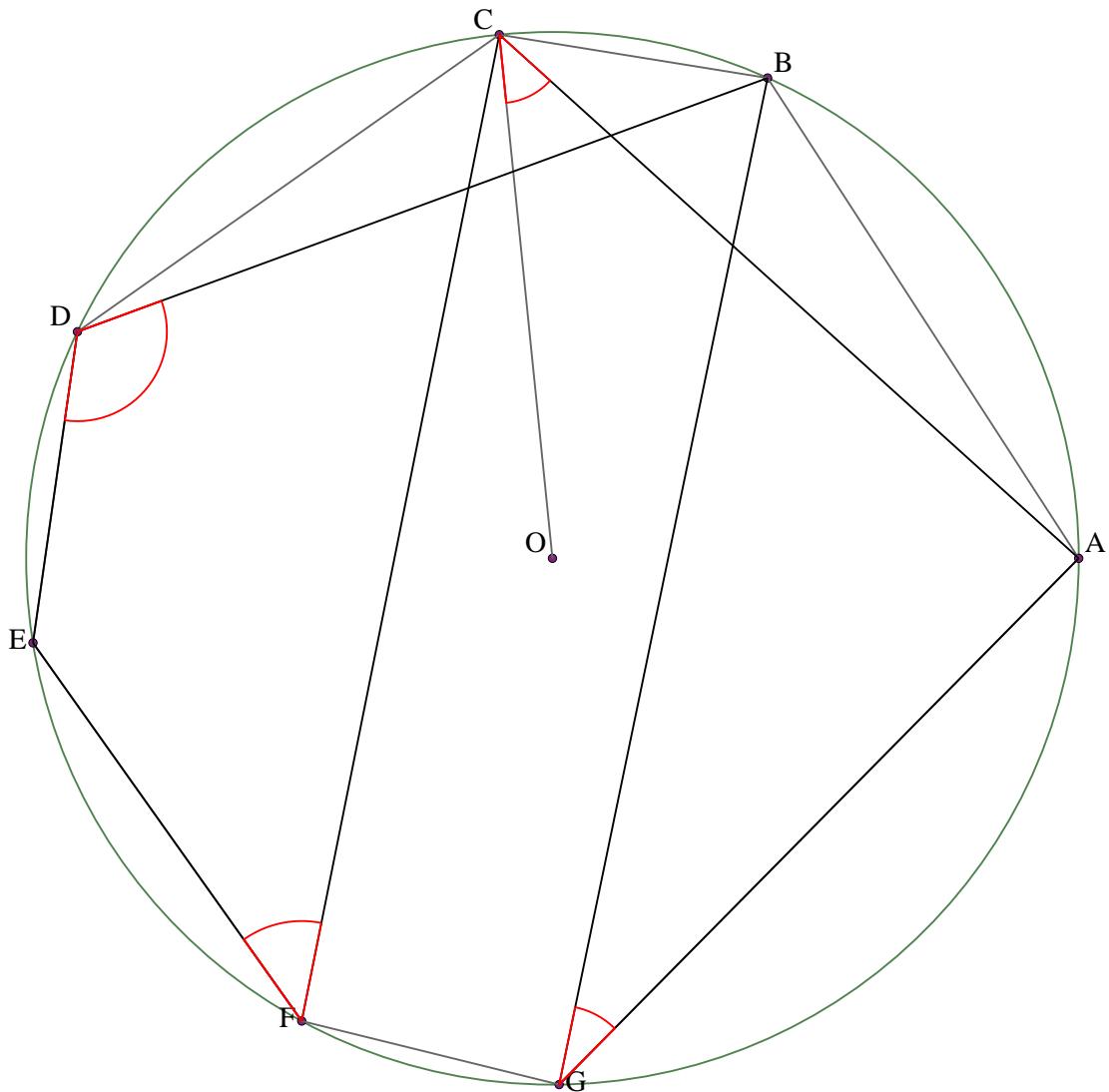
Prove that $DFO + CBE + ECF = CAD + 90$

Example 53



Let $ABCDEFG$ be a cyclic heptagon with center O . Let H be the intersection of BA and FC .
 Angle $ADF = 61^\circ$. Angle $FGB = 89^\circ$. Angle $BHC = 44^\circ$.
 Find angle CEF .

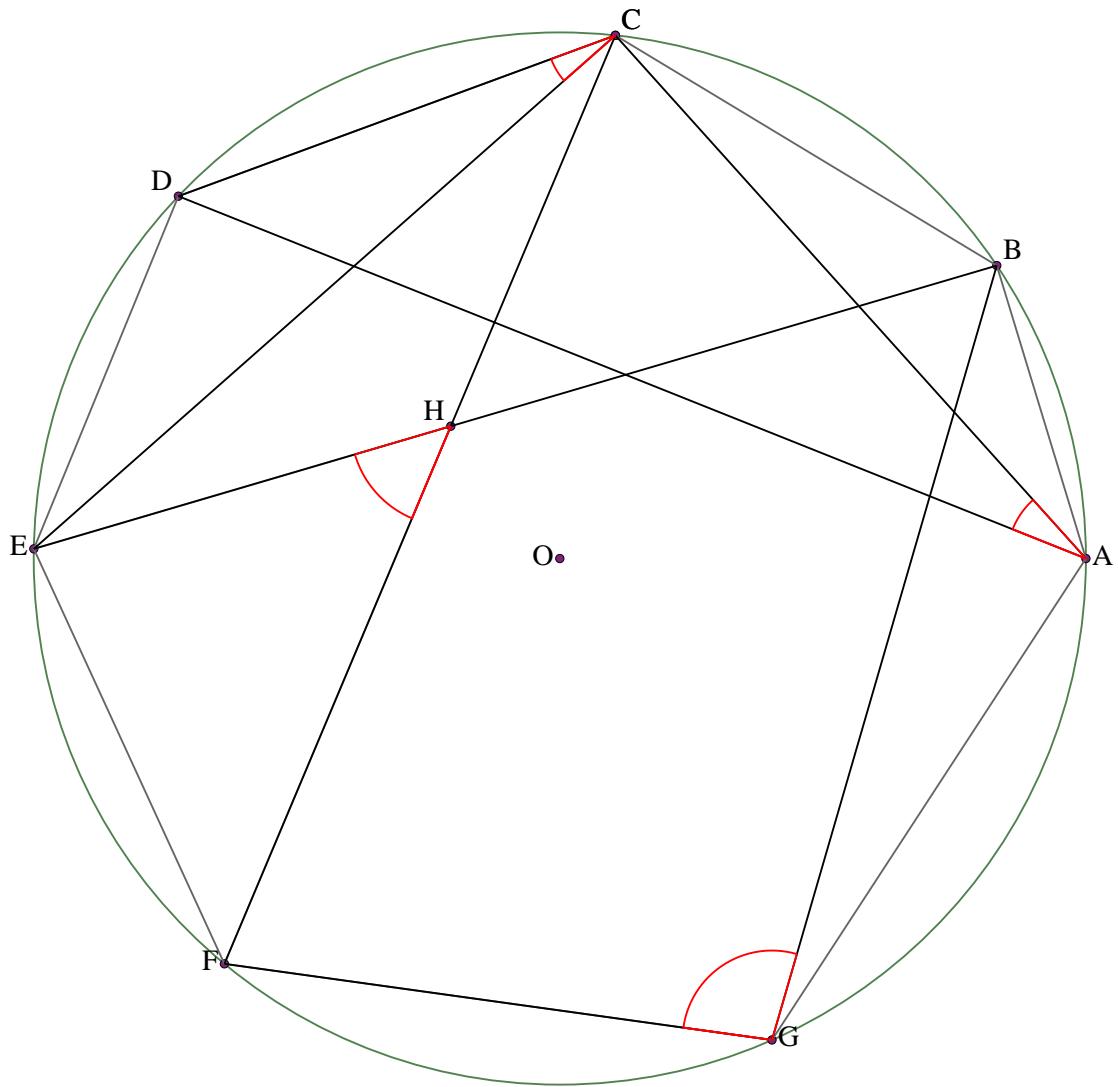
Example 54



Let ABCDEFG be a cyclic heptagon with center O.

Prove that $BDE + CFE = ACO + AGB + 90^\circ$

Example 55

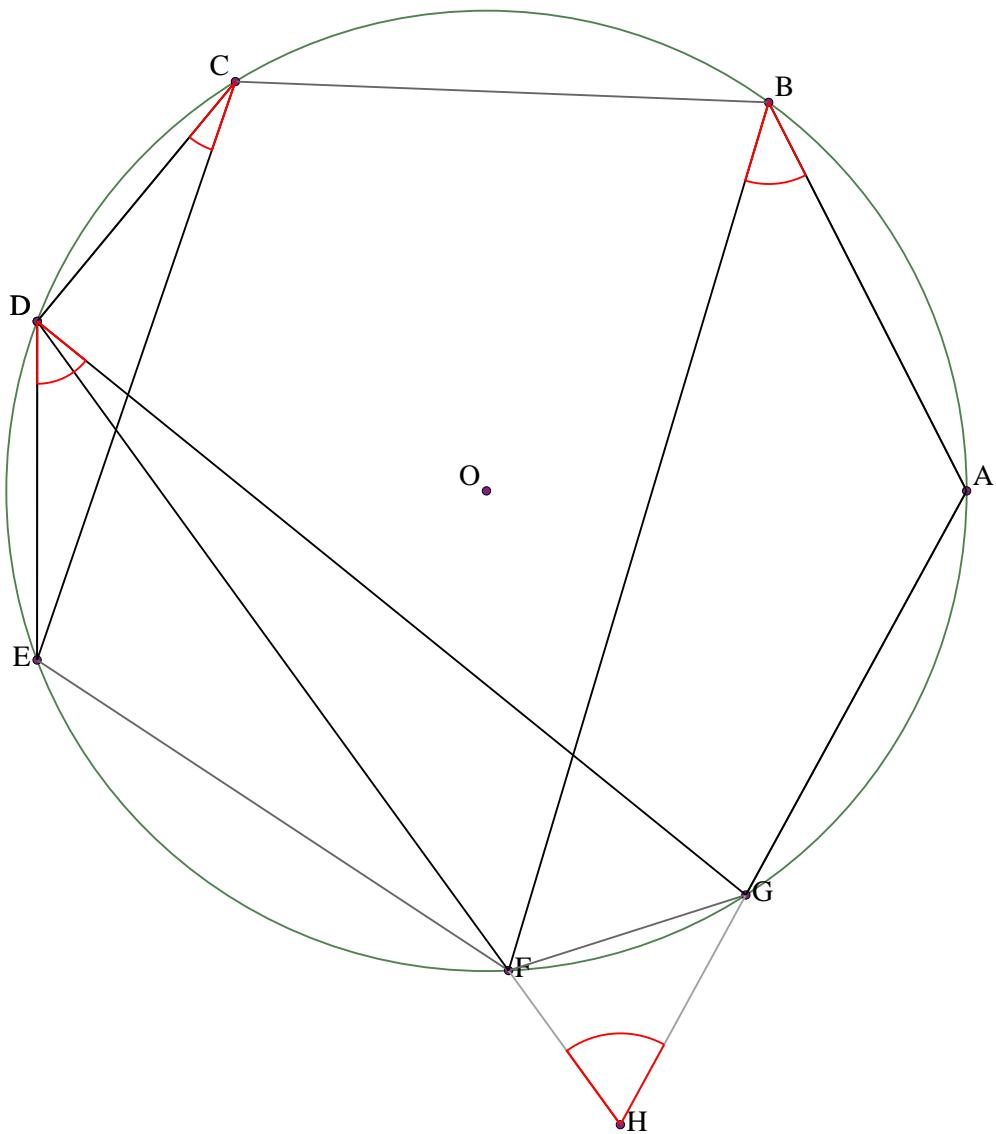


Let $ABCDEFG$ be a cyclic heptagon with center O . Let H be the intersection of CF and BE .

Angle $FGB = 98^\circ$. Angle $DAC = 26^\circ$. Angle $FHE = 51^\circ$.

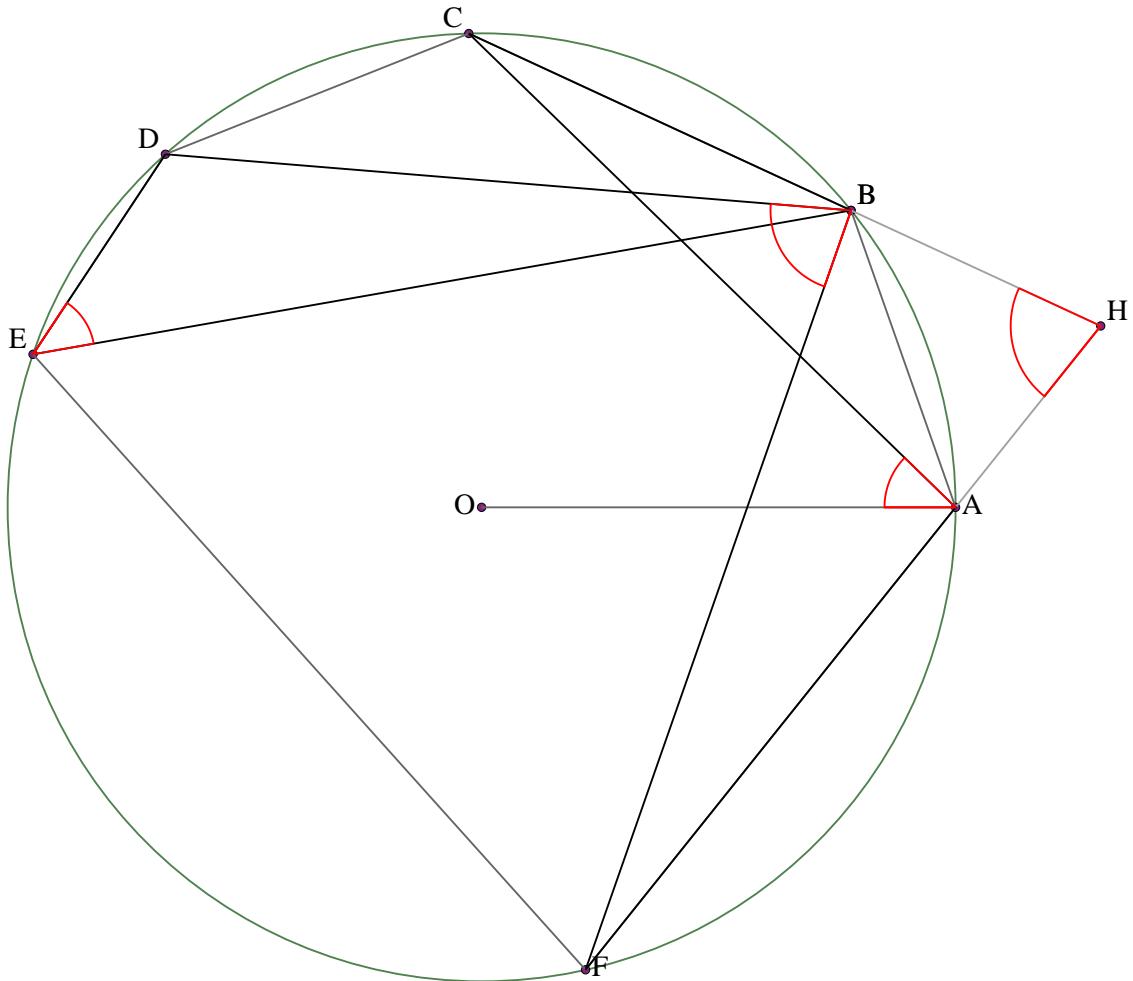
Find angle ECD .

Example 56



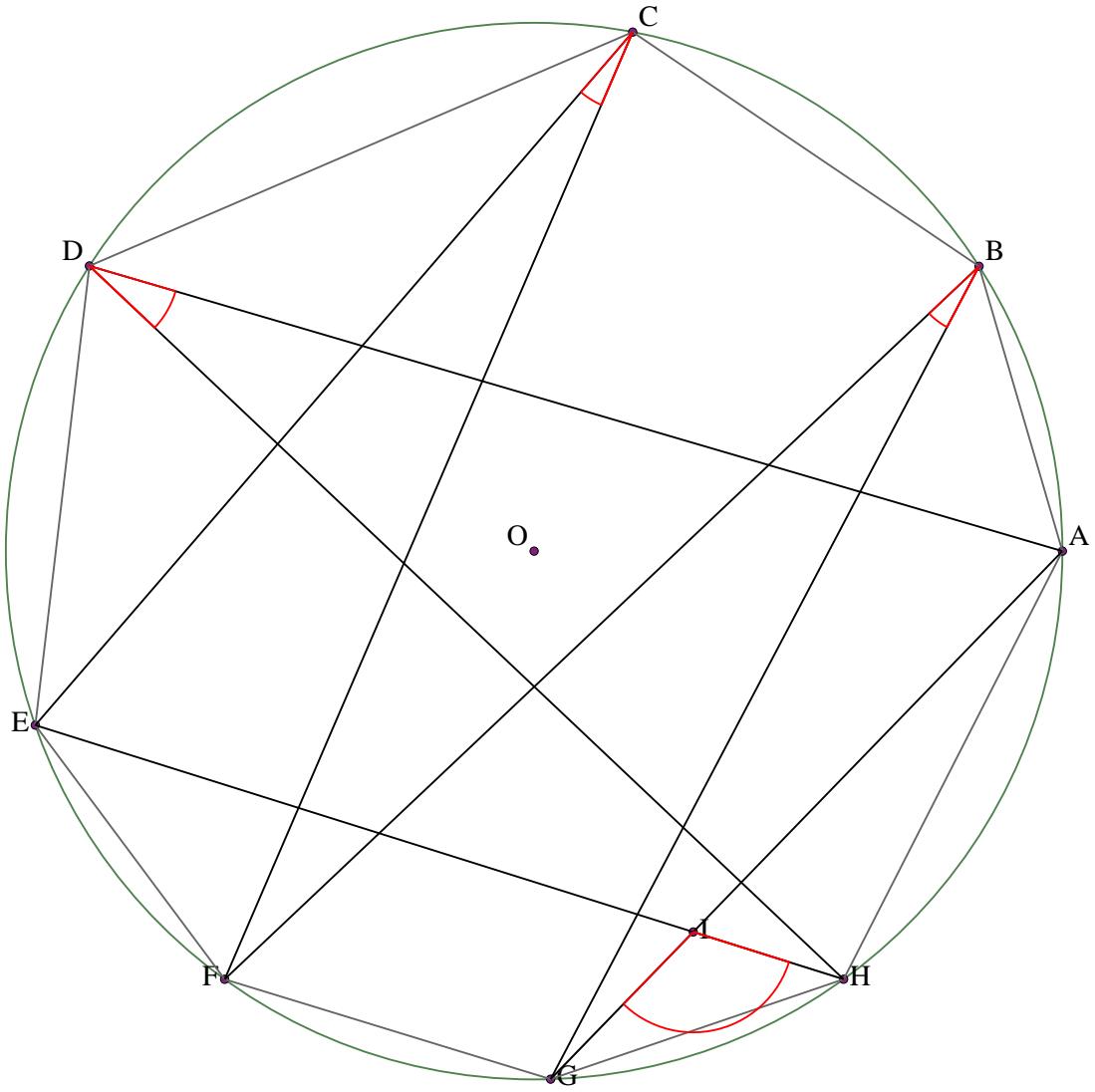
Let $ABCDEFG$ be a cyclic heptagon with center O . Let H be the intersection of DF and AG .
 Angle $GDE = 51^\circ$. Angle $FBA = 44^\circ$. Angle $FHG = 65^\circ$.
 Find angle ECD .

Example 57



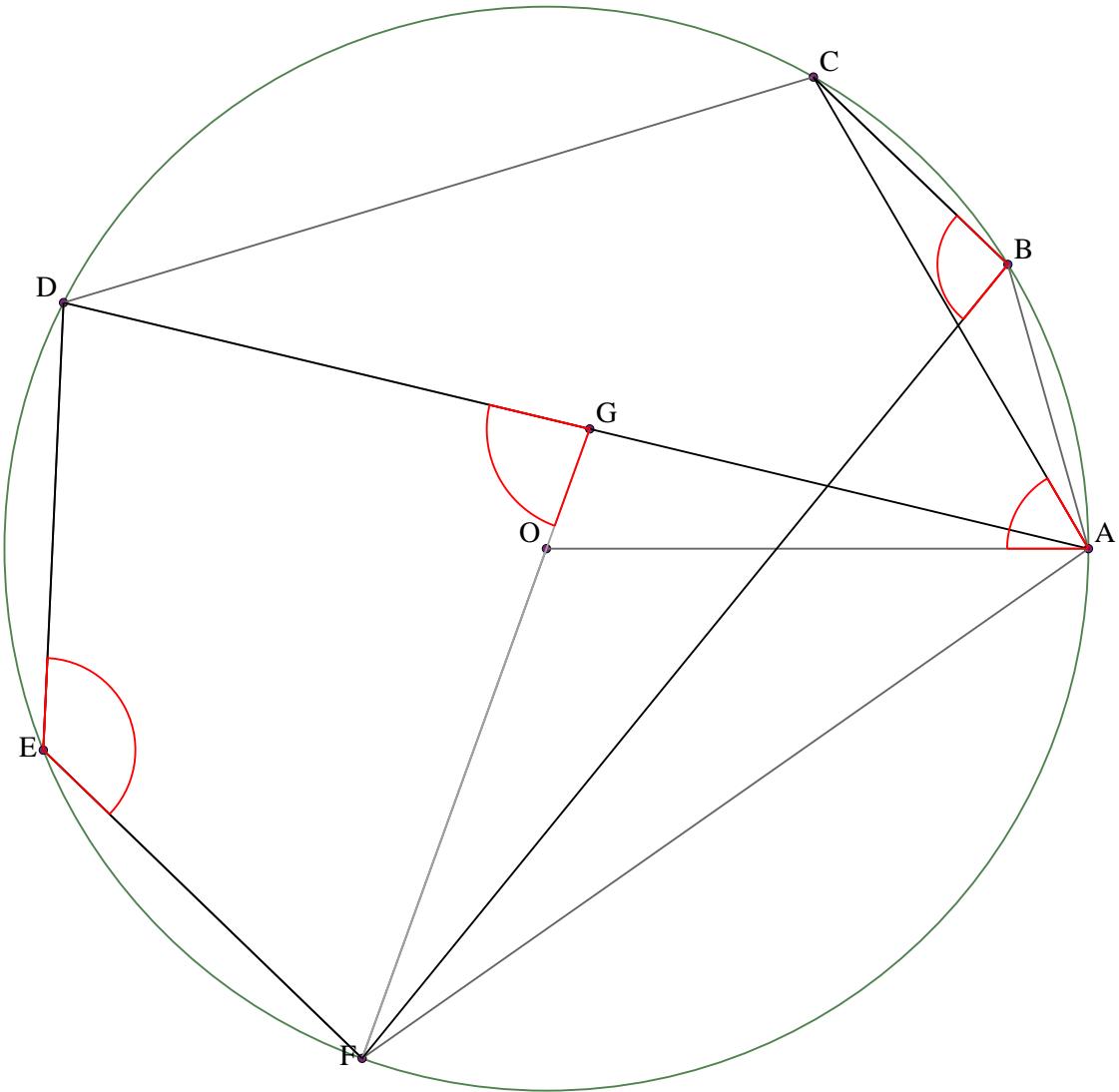
Let $ABCDEF$ be a cyclic hexagon with center O . Let H be the intersection of FA and CB .
 Angle $DEB = 47^\circ$. Angle $OAC = 44^\circ$. Angle $FBD = 75^\circ$.
 Find angle AHB .

Example 58



Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of EH and AG .
 Angle $GBF = 19^\circ$. Angle $HDA = 27^\circ$. Angle $HIG = 117^\circ$.
 Find angle FCE .

Example 59

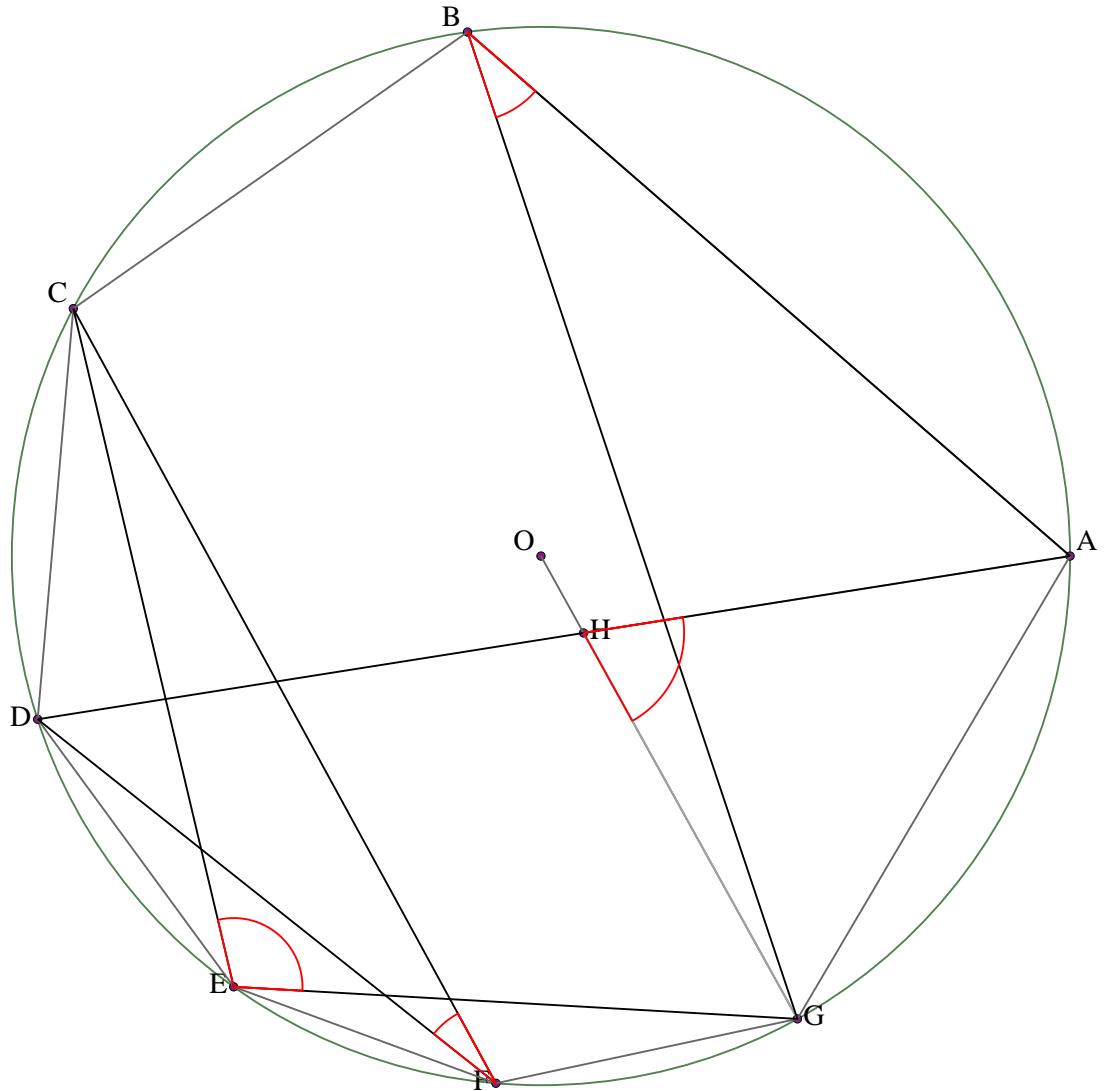


Let $ABCDEF$ be a cyclic hexagon with center O . Let G be the intersection of AD and FO .

Angle $FBC = 95^\circ$. Angle $CAO = 60^\circ$. Angle $DGF = 84^\circ$.

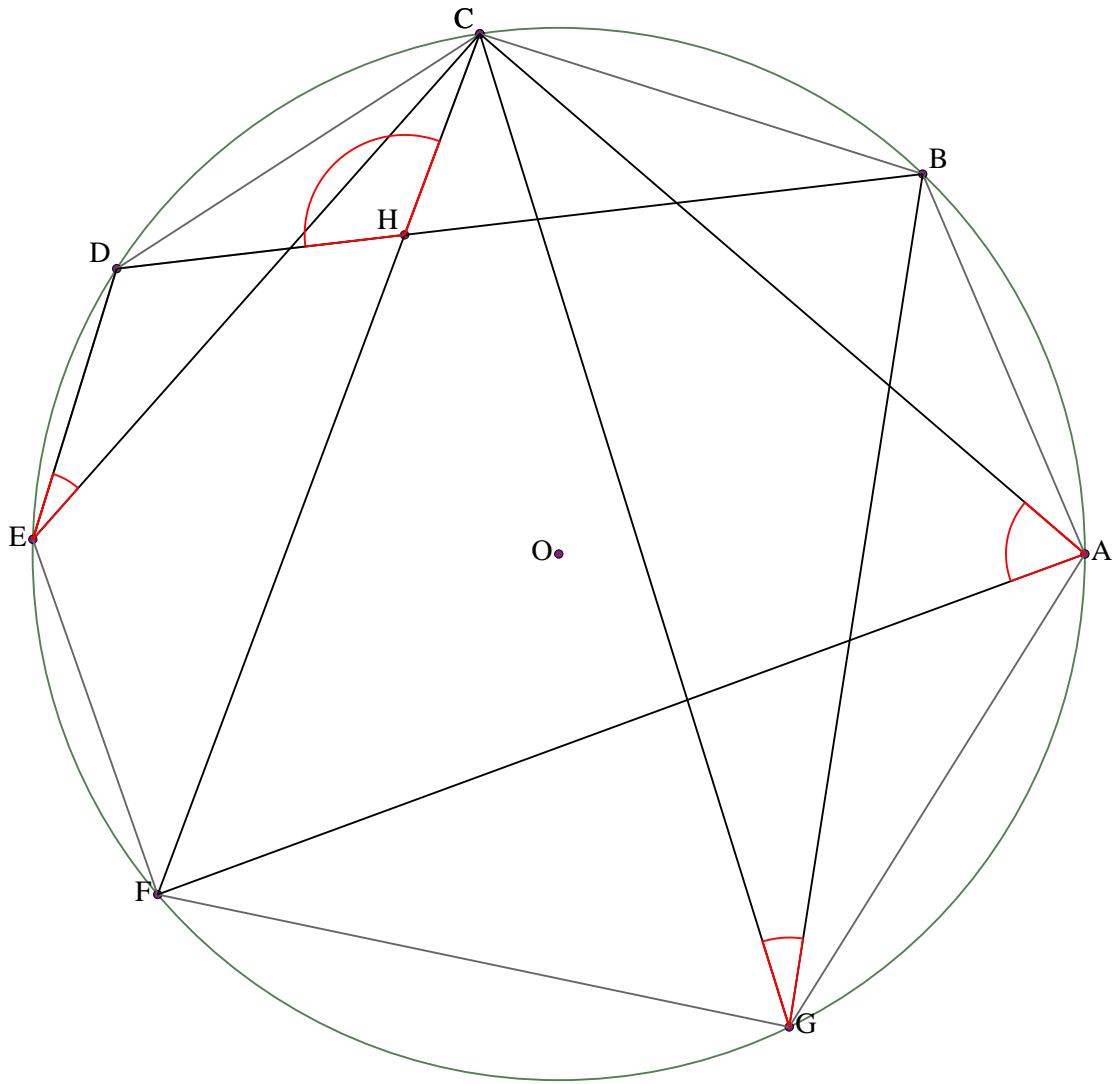
Find angle DEF .

Example 60



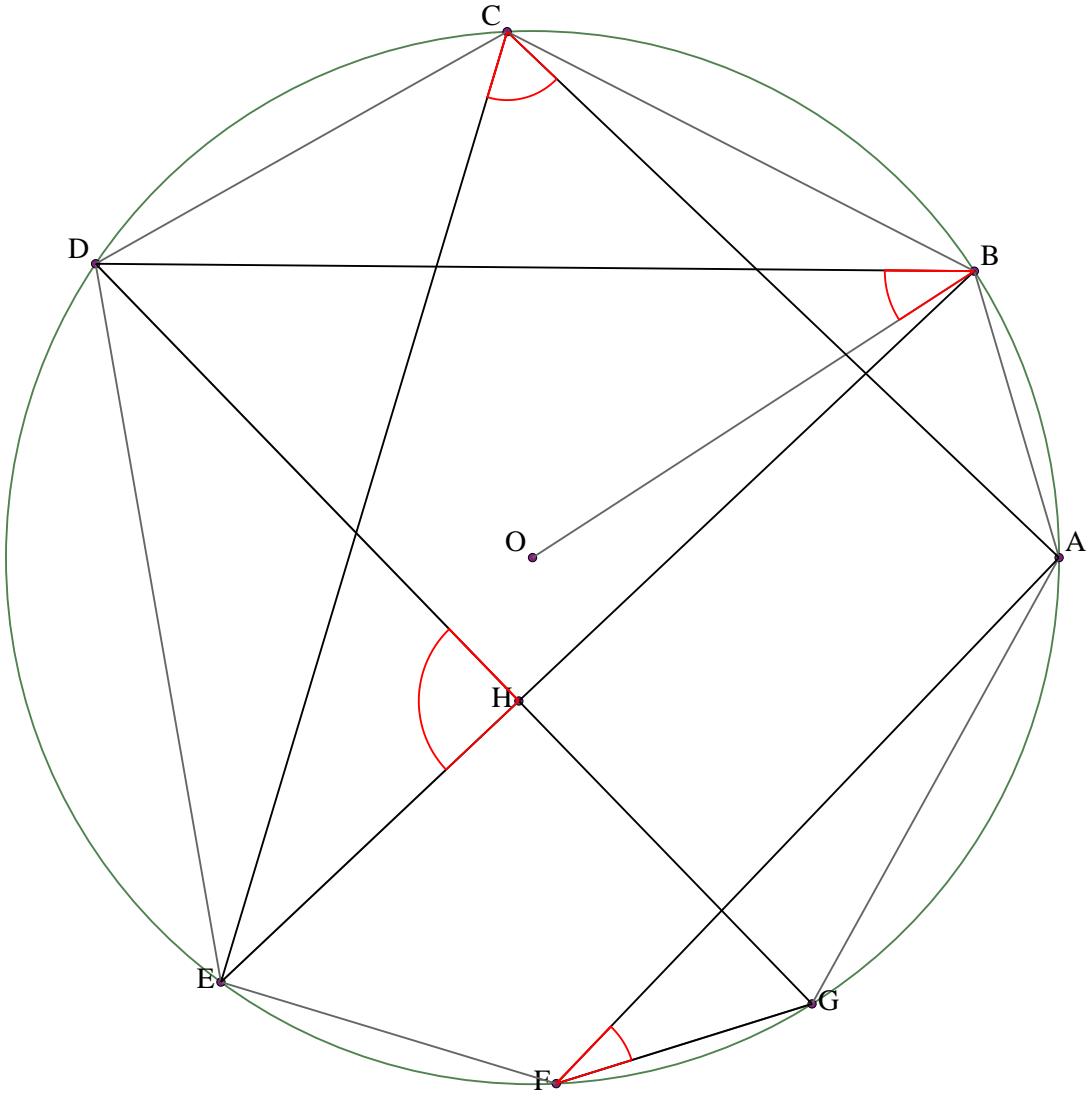
Let $ABCDEFG$ be a cyclic heptagon with center O . Let H be the intersection of DA and GO .
 Angle $GEC = x$. Angle $CFD = y$. Angle $ABG = z$.
 Find angle AHG .

Example 61



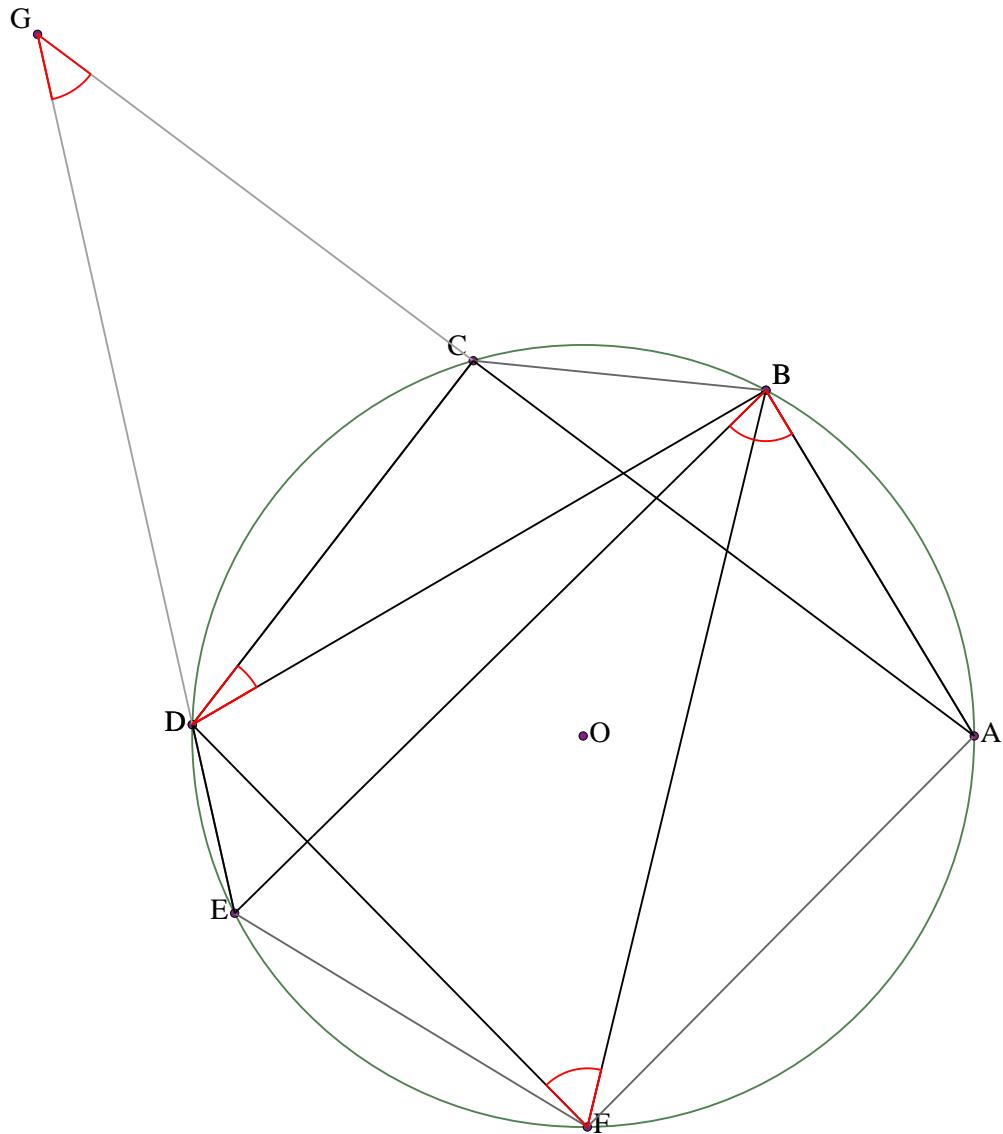
Let $ABCDEFG$ be a cyclic heptagon with center O . Let H be the intersection of FC and BD .
 Angle $DEC = 24^\circ$. Angle $CGB = 26^\circ$. Angle $CHD = 117^\circ$.
 Find angle CAF .

Example 62



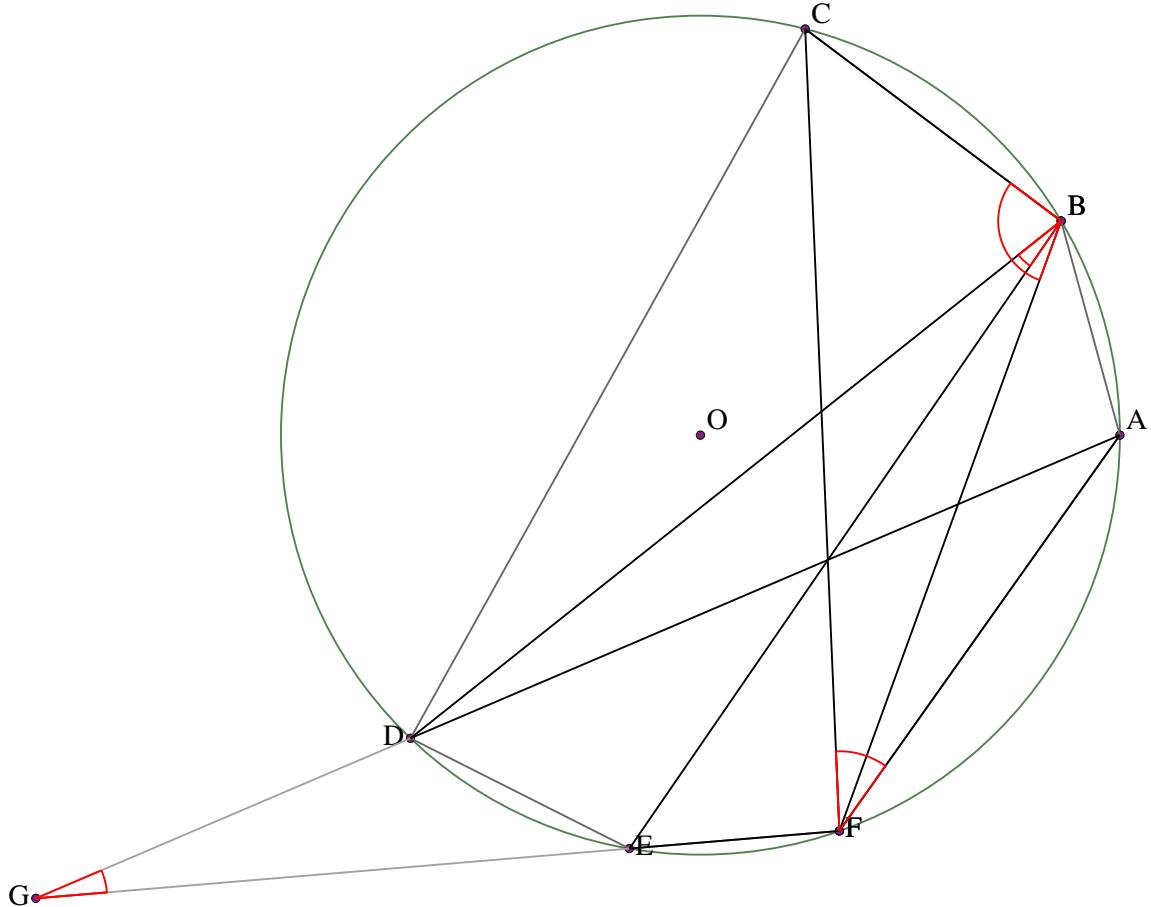
Let $ABCDEFG$ be a cyclic heptagon with center O . Let H be the intersection of GD and BE .
 Angle $ECA = 63^\circ$. Angle $DHE = 89^\circ$. Angle $AFG = 29^\circ$.
 Find angle DBO .

Example 63



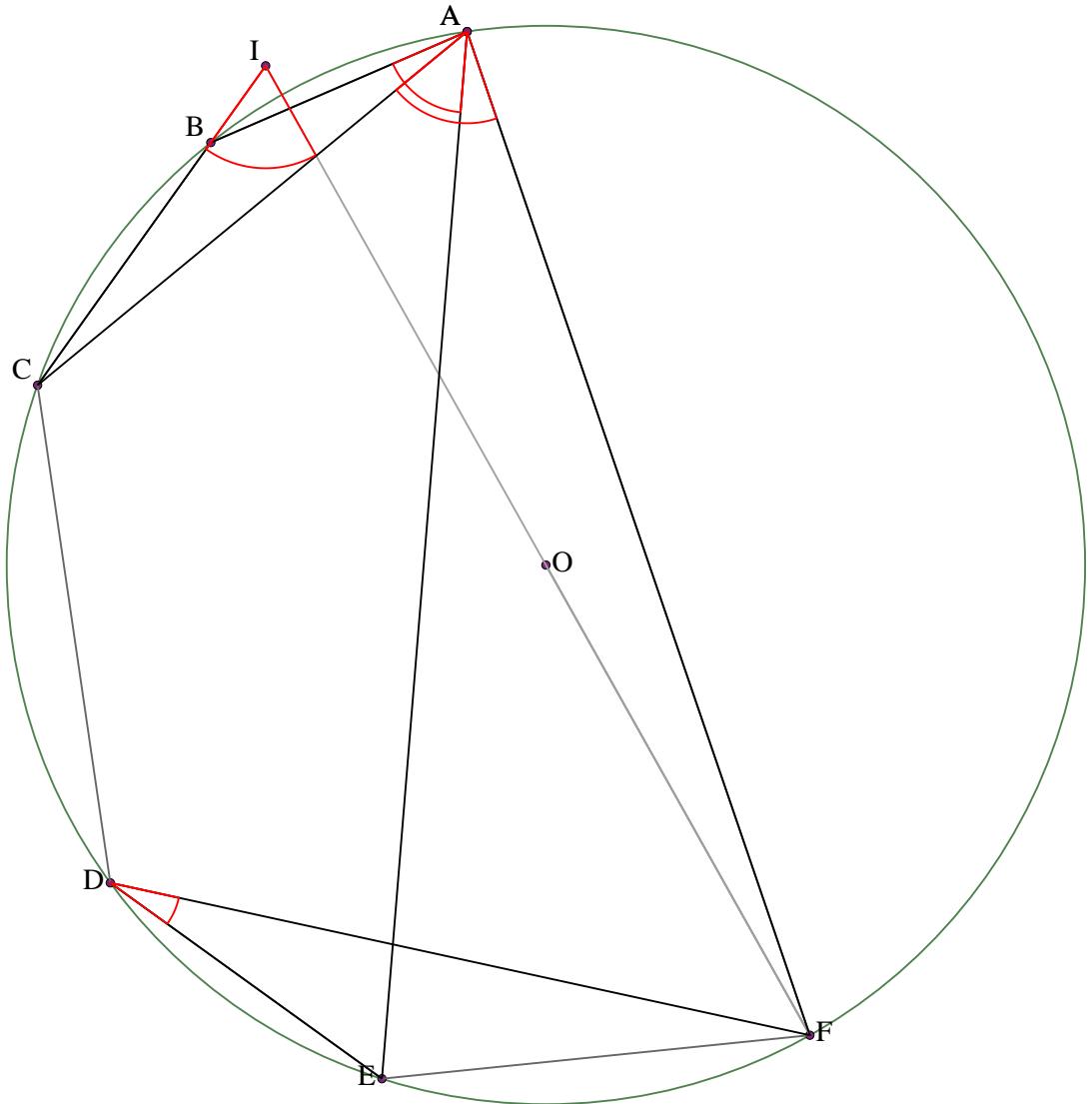
Let $ABCDEF$ be a cyclic hexagon with center O . Let G be the intersection of ED and CA .
 Angle $BFD = 58^\circ$. Angle $DGC = 41^\circ$. Angle $ABE = 77^\circ$.
 Find angle BDC .

Example 64



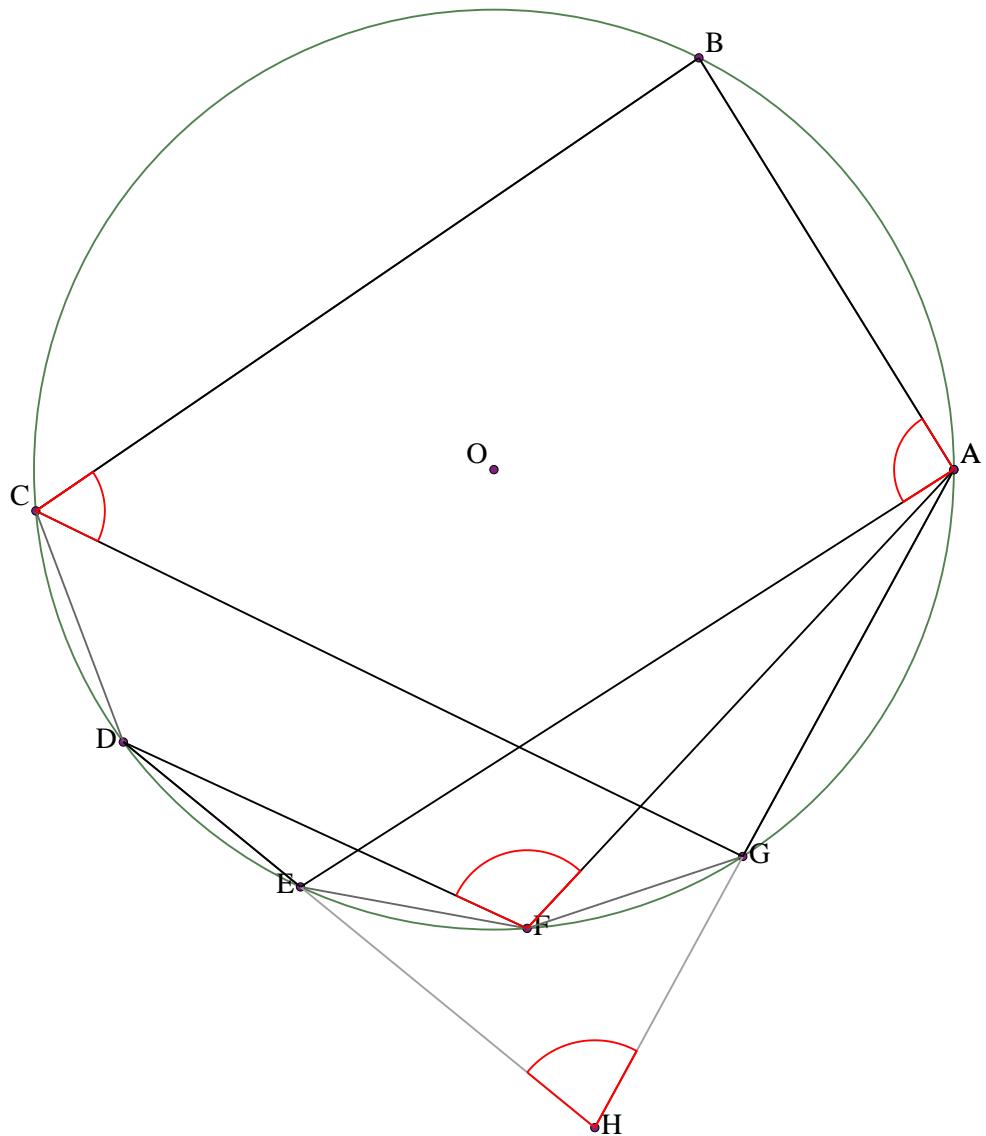
Let $ABCDEF$ be a cyclic hexagon with center O . Let G be the intersection of EF and AD .
 Angle $DBE = 17^\circ$. Angle $EGD = 18^\circ$. Angle $CFA = 38^\circ$.
 Find angle CBF .

Example 65



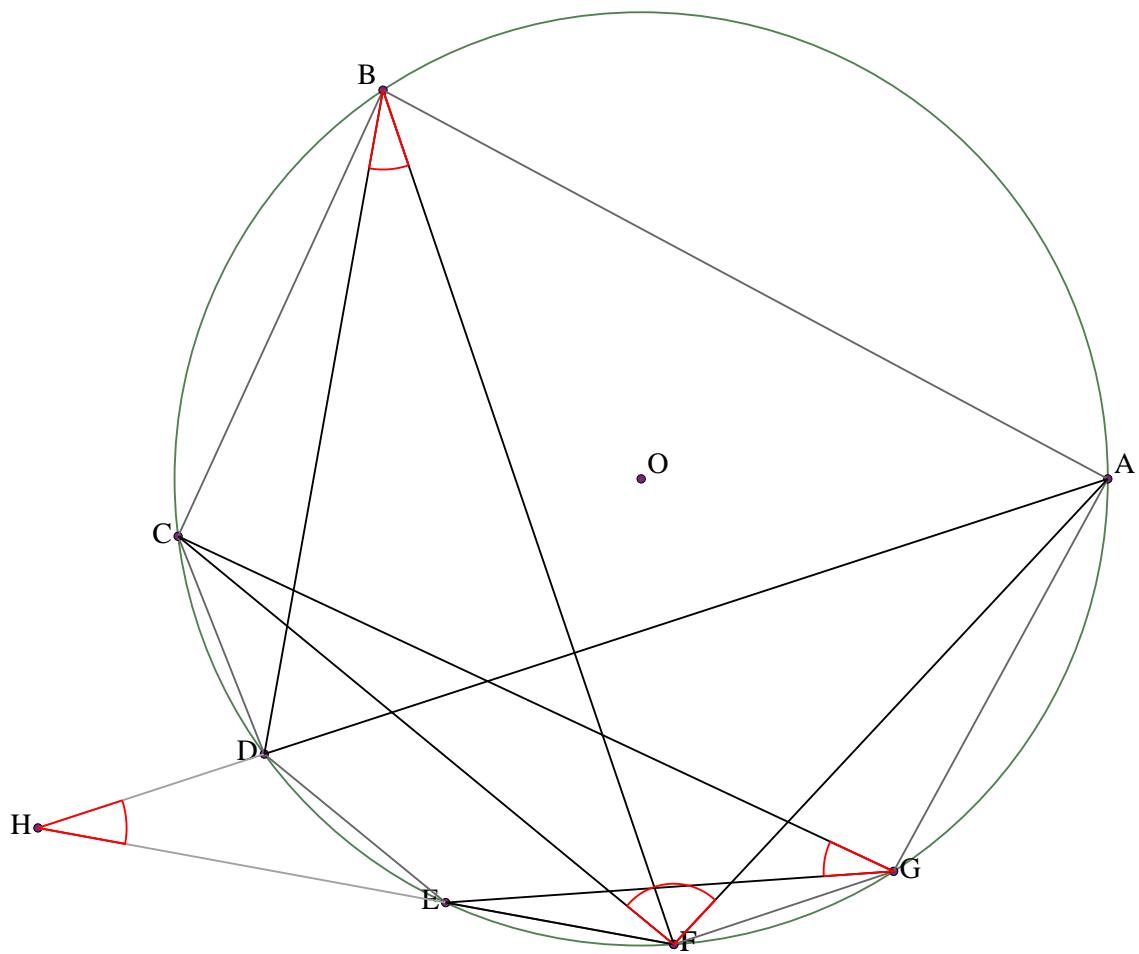
Let $ABCDEF$ be a cyclic hexagon with center O . Let I be the intersection of CB and FO .
 Angle $FDE = x$. Angle $EAB = y$. Angle $CAF = z$.
 Find angle BIF .

Example 66



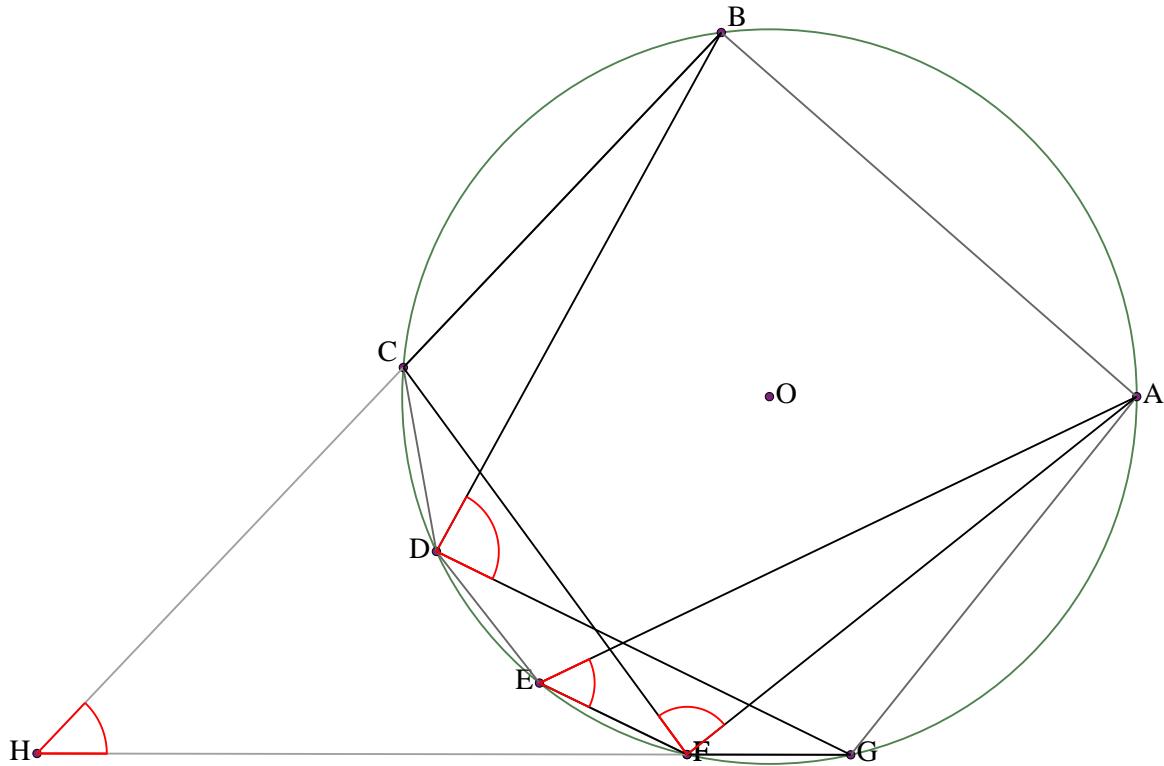
Let ABCDEFG be a cyclic heptagon with center O. Let H be the intersection of GA and DE. Prove that $BAE + BCG + AFD = EHG + 180$

Example 67



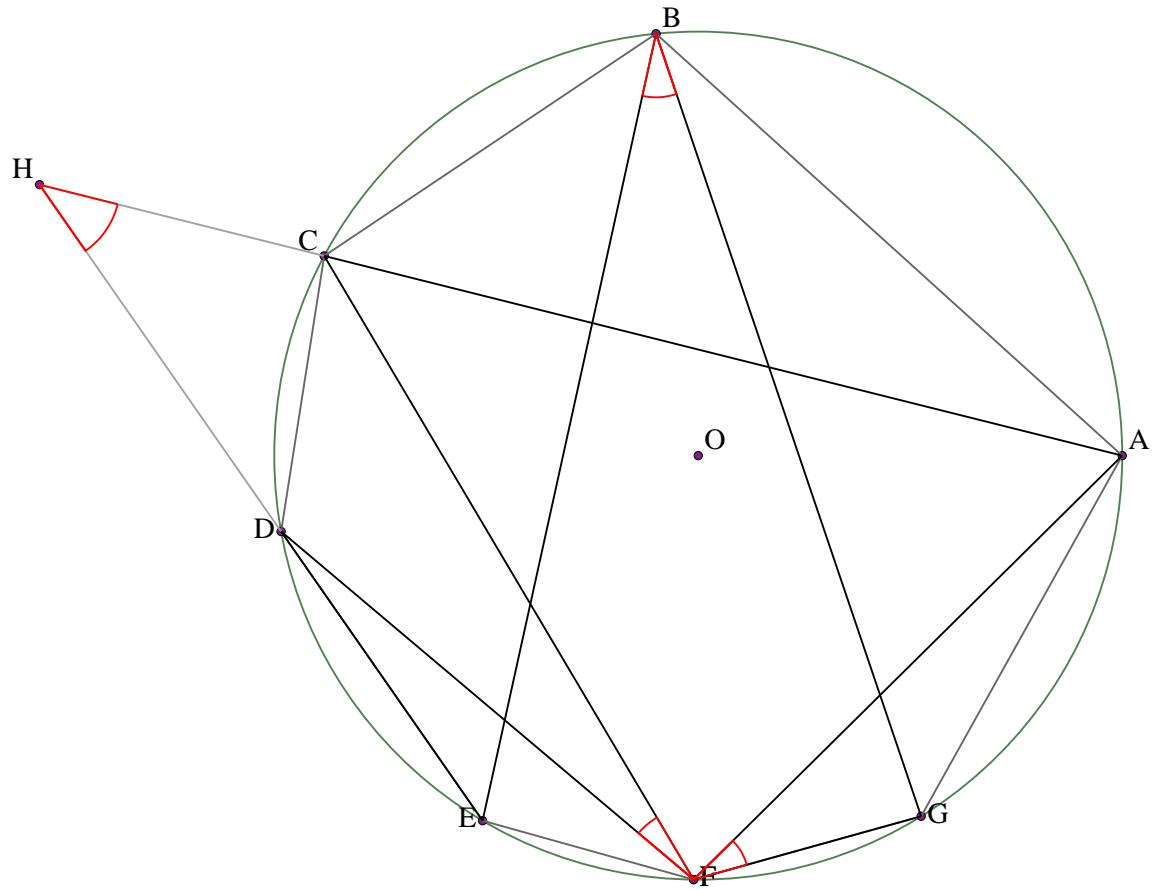
Let $ABCDEFG$ be a cyclic heptagon with center O . Let H be the intersection of EF and DA .
 Angle $AFC = 94^\circ$. Angle $CGE = 29^\circ$. Angle $EHD = 28^\circ$.
 Find angle FBD .

Example 68



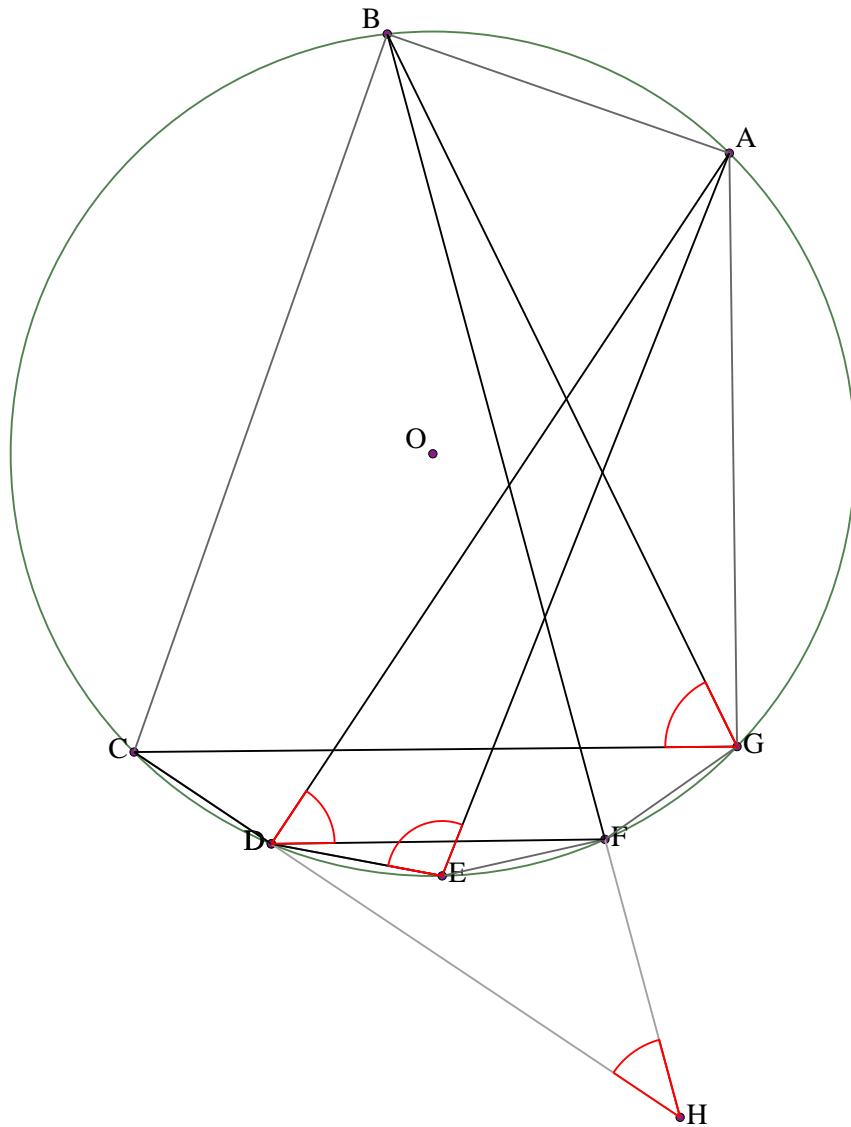
Let $ABCDEFG$ be a cyclic heptagon with center O . Let H be the intersection of FG and BC .
 Angle $FHC = x$. Angle $AEF = y$. Angle $GDB = z$.
 Find angle CFA .

Example 69



Let $ABCDEFG$ be a cyclic heptagon with center O . Let H be the intersection of ED and CA .
 Angle $AFG = x$. Angle $GBE = y$. Angle $DHC = z$.
 Find angle DFC .

Example 70

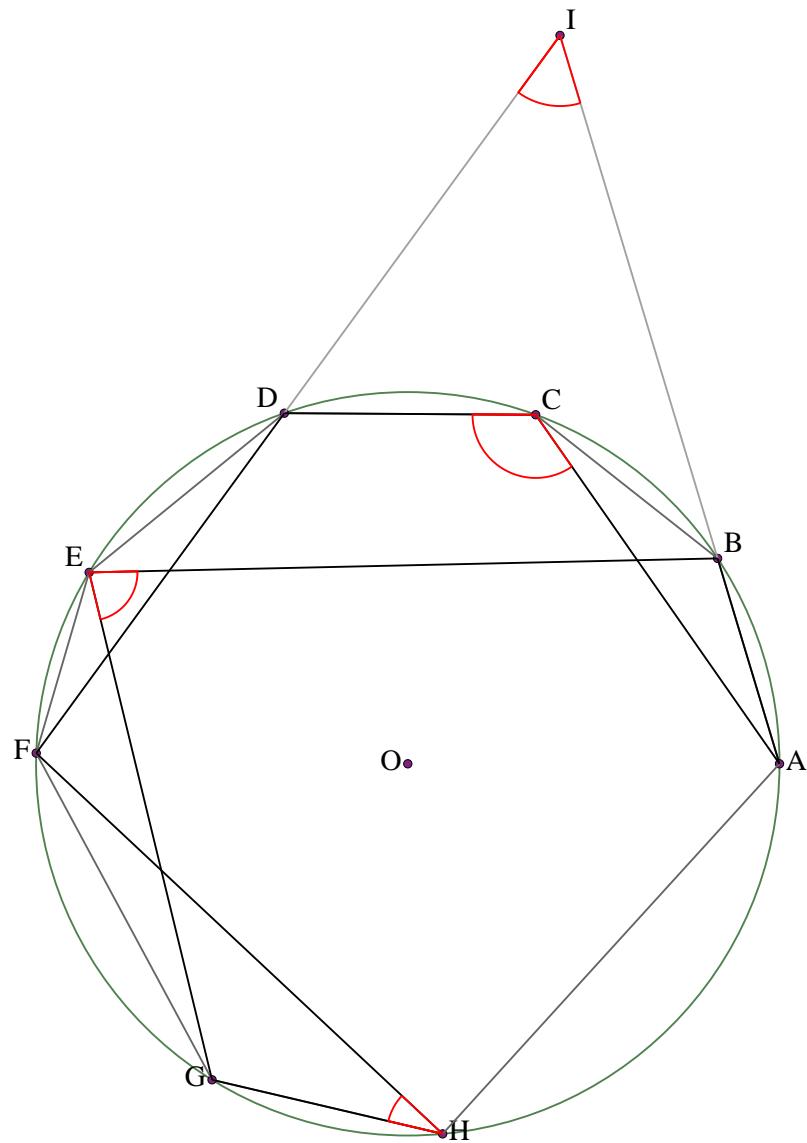


Let $ABCDEFG$ be a cyclic heptagon with center O . Let H be the intersection of FB and CD .

Angle $DEA = 101^\circ$. Angle $ADF = 56^\circ$. Angle $BGC = 64^\circ$.

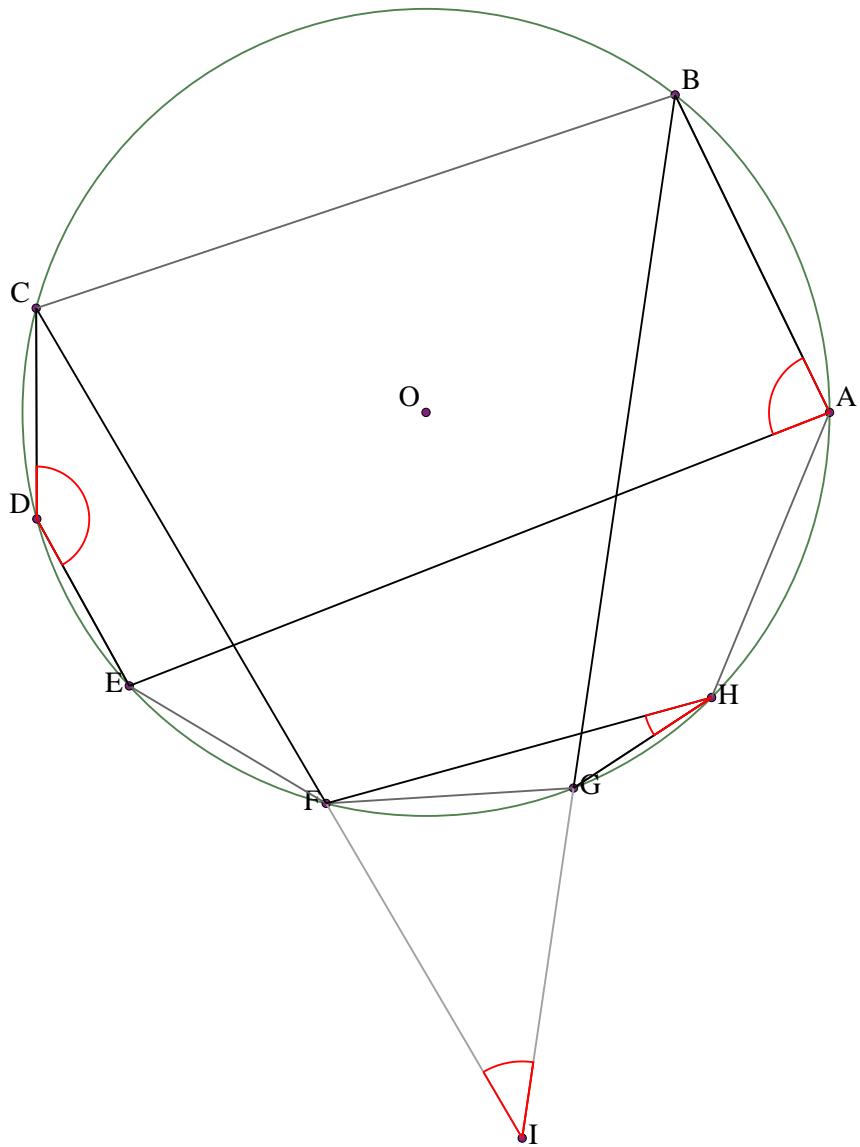
Find angle FHD .

Example 71



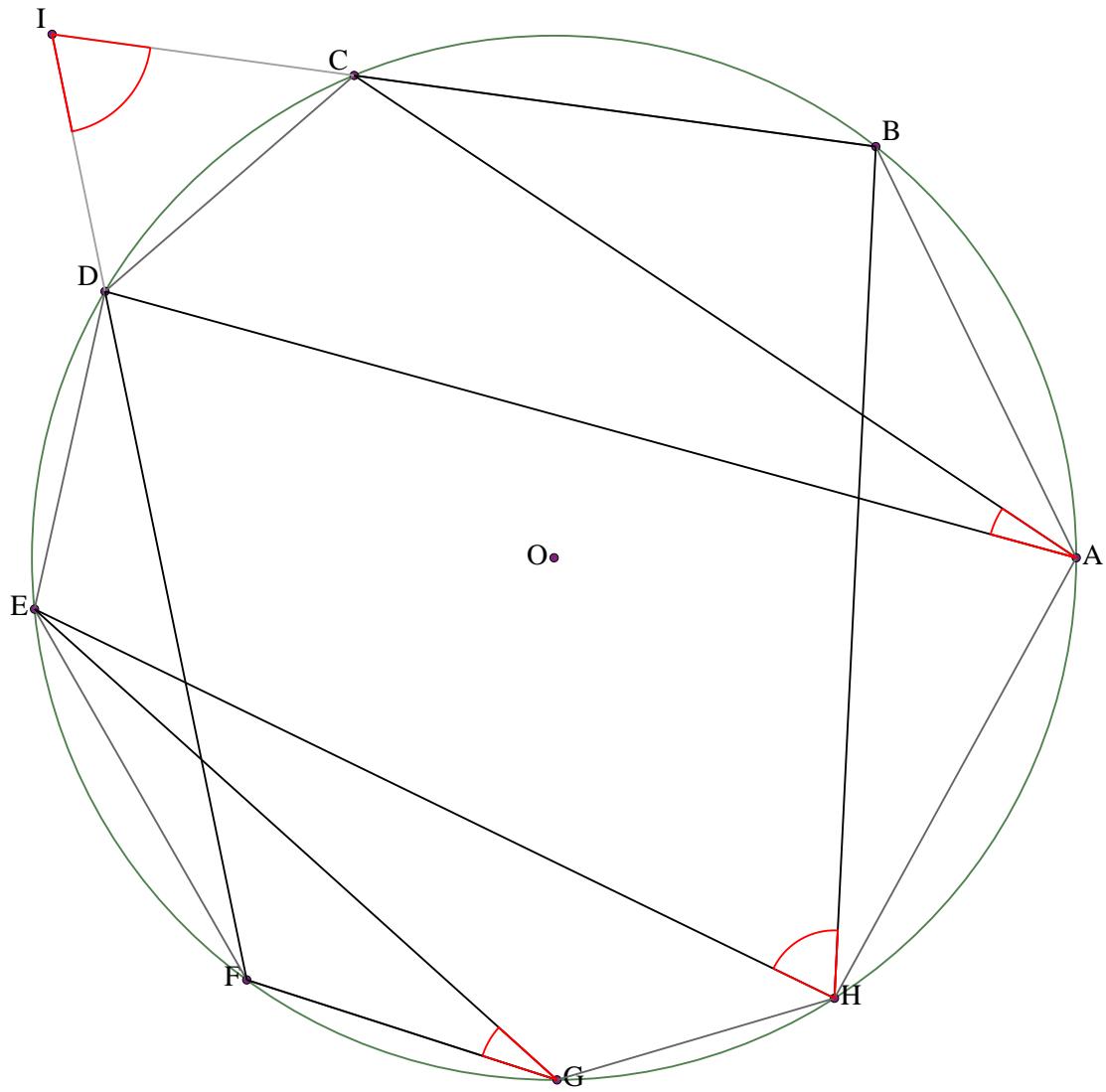
Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of FD and AB .
 Prove that $BEG+FHG+ACD = BID+180$

Example 72



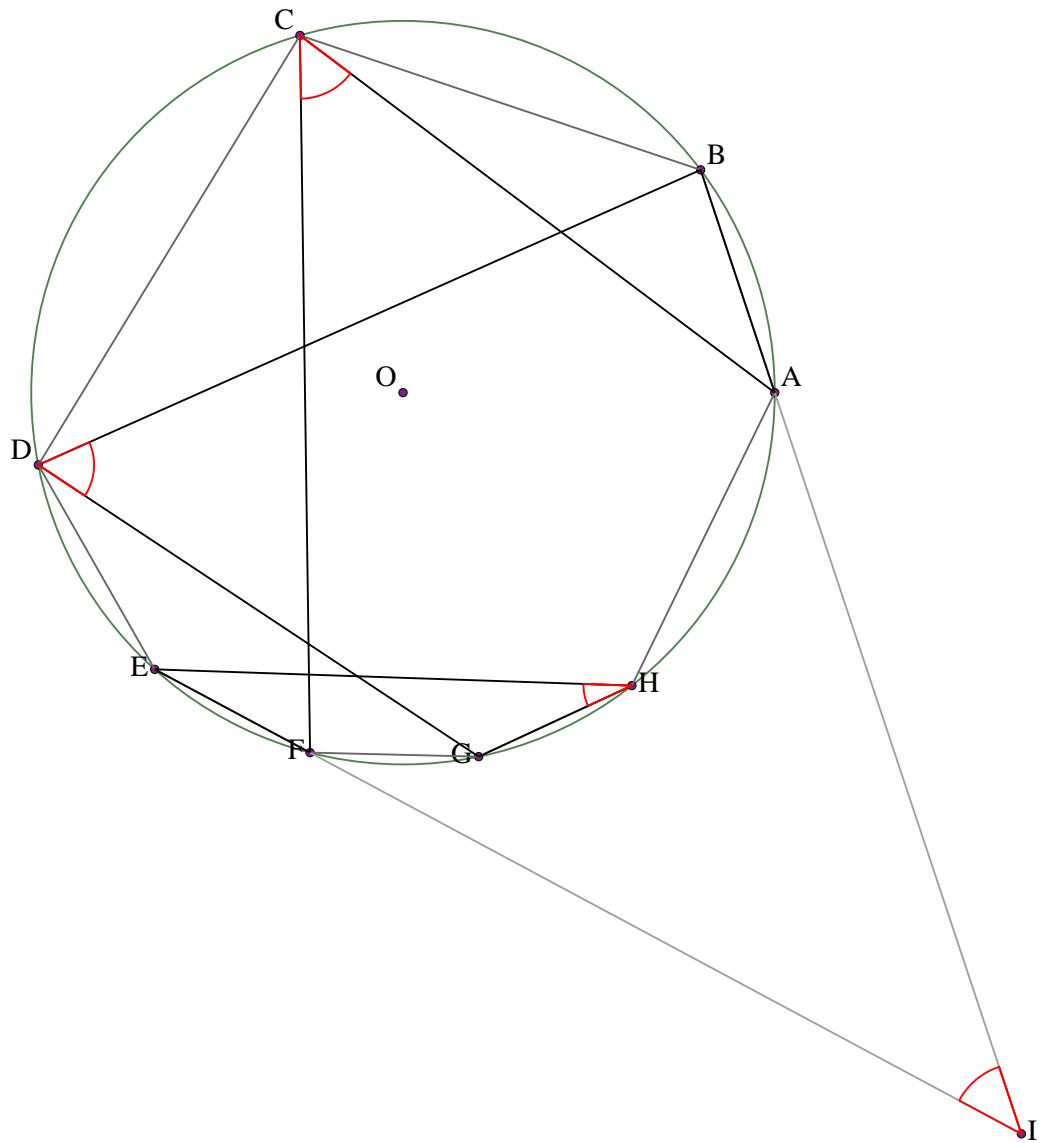
Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of BG and FC .
 Angle $CDE = x$. Angle $EAB = y$. Angle $GIF = z$.
 Find angle GHF .

Example 73



Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of FD and CB .
 Angle $EGF = 24^\circ$. Angle $DAC = 18^\circ$. Angle $DIC = 71^\circ$.
 Find angle BHE .

Example 74

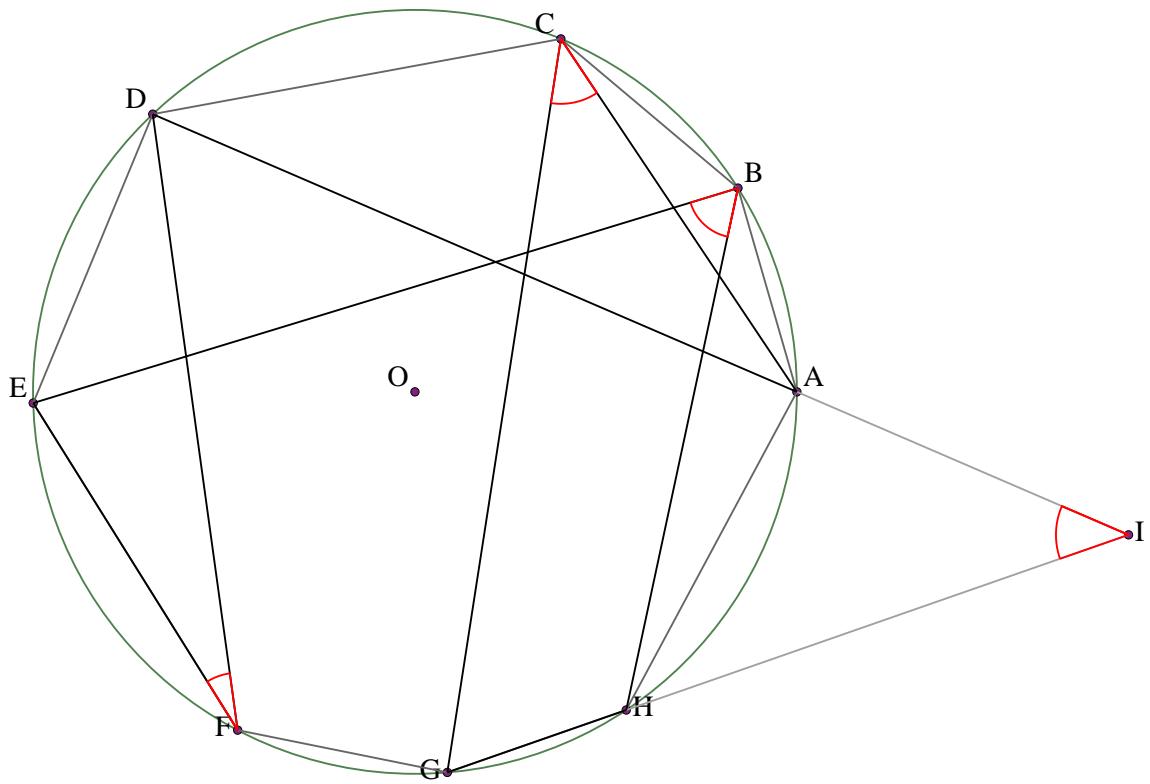


Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of BA and FE .

Angle $GDB = 58^\circ$. Angle $ACF = 52^\circ$. Angle $AIF = 43^\circ$.

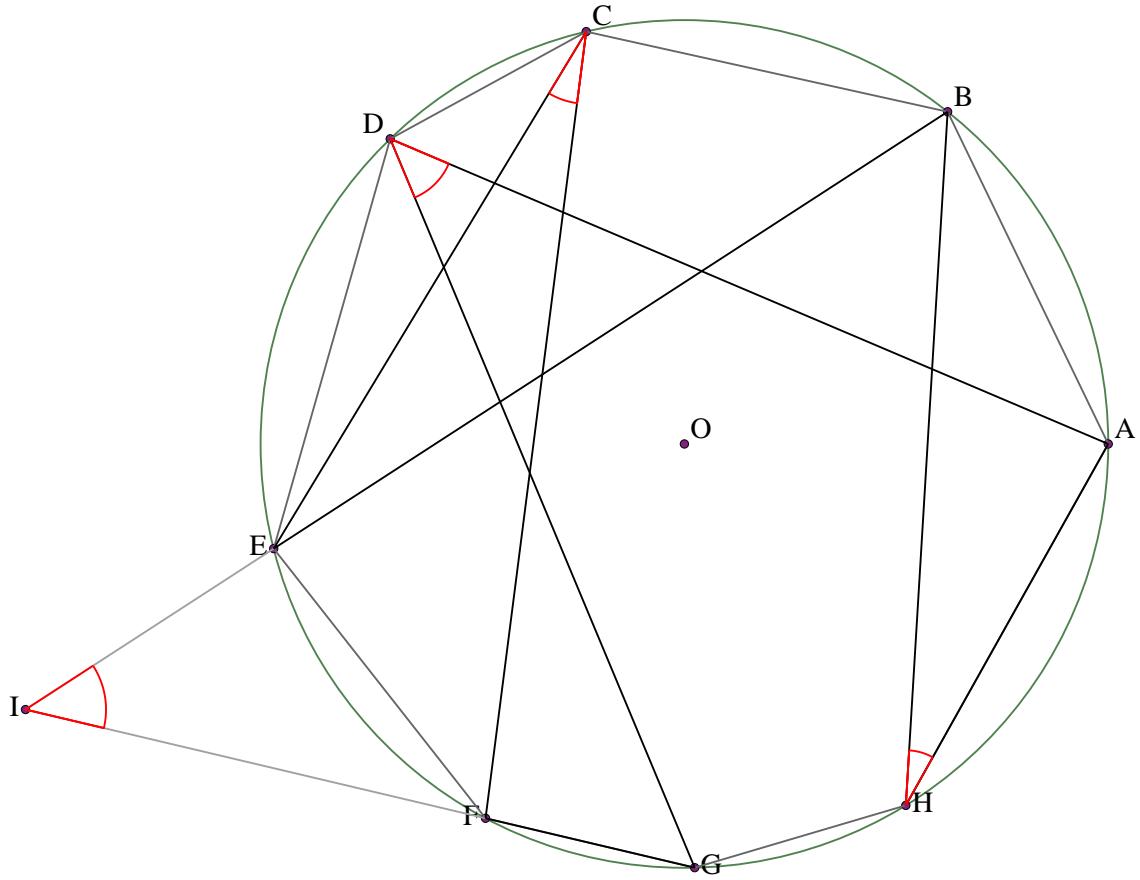
Find angle EHG .

Example 75



Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of DA and GH .
 Prove that $EBH + DFE = ACG + AIH$

Example 76

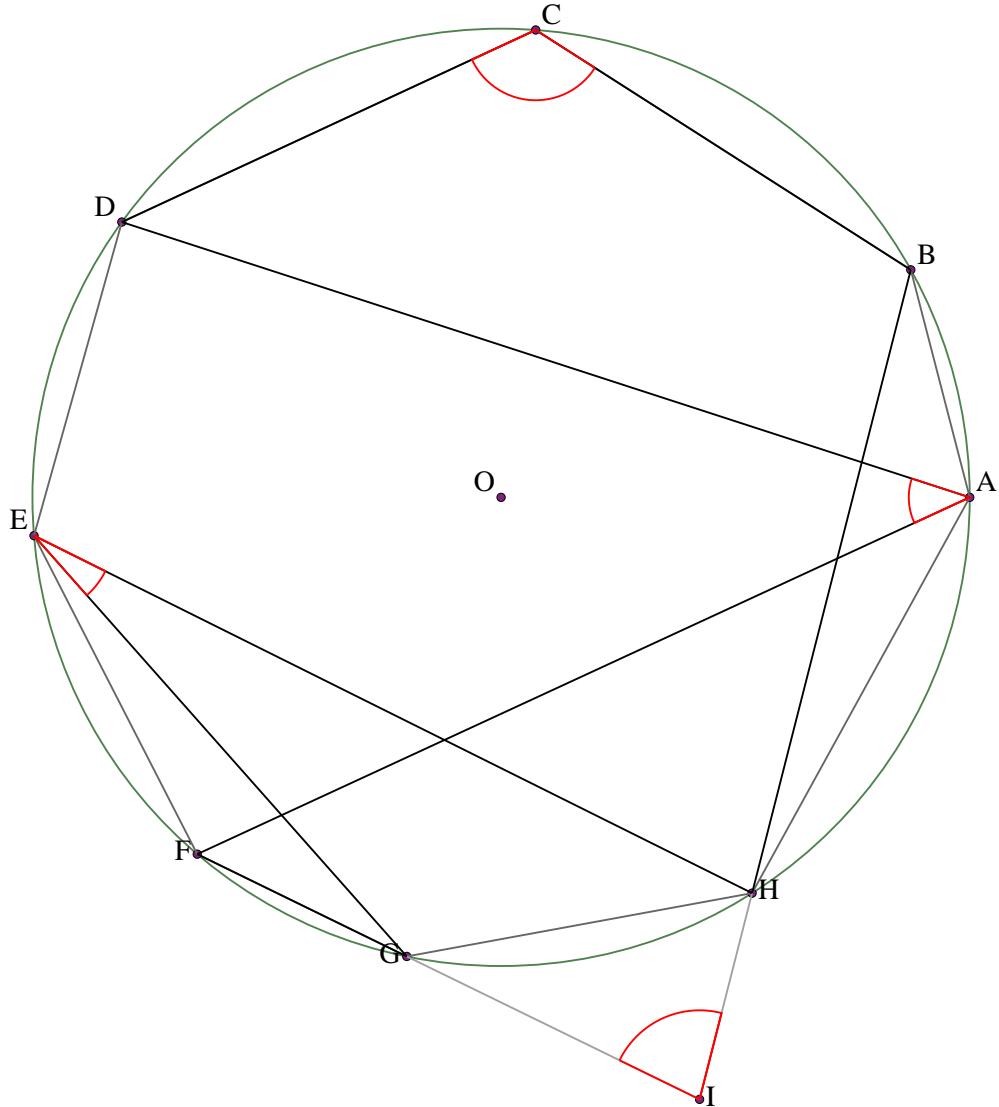


Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of GF and EB .

Angle $BHA = x$. Angle $ADG = y$. Angle $FIE = z$.

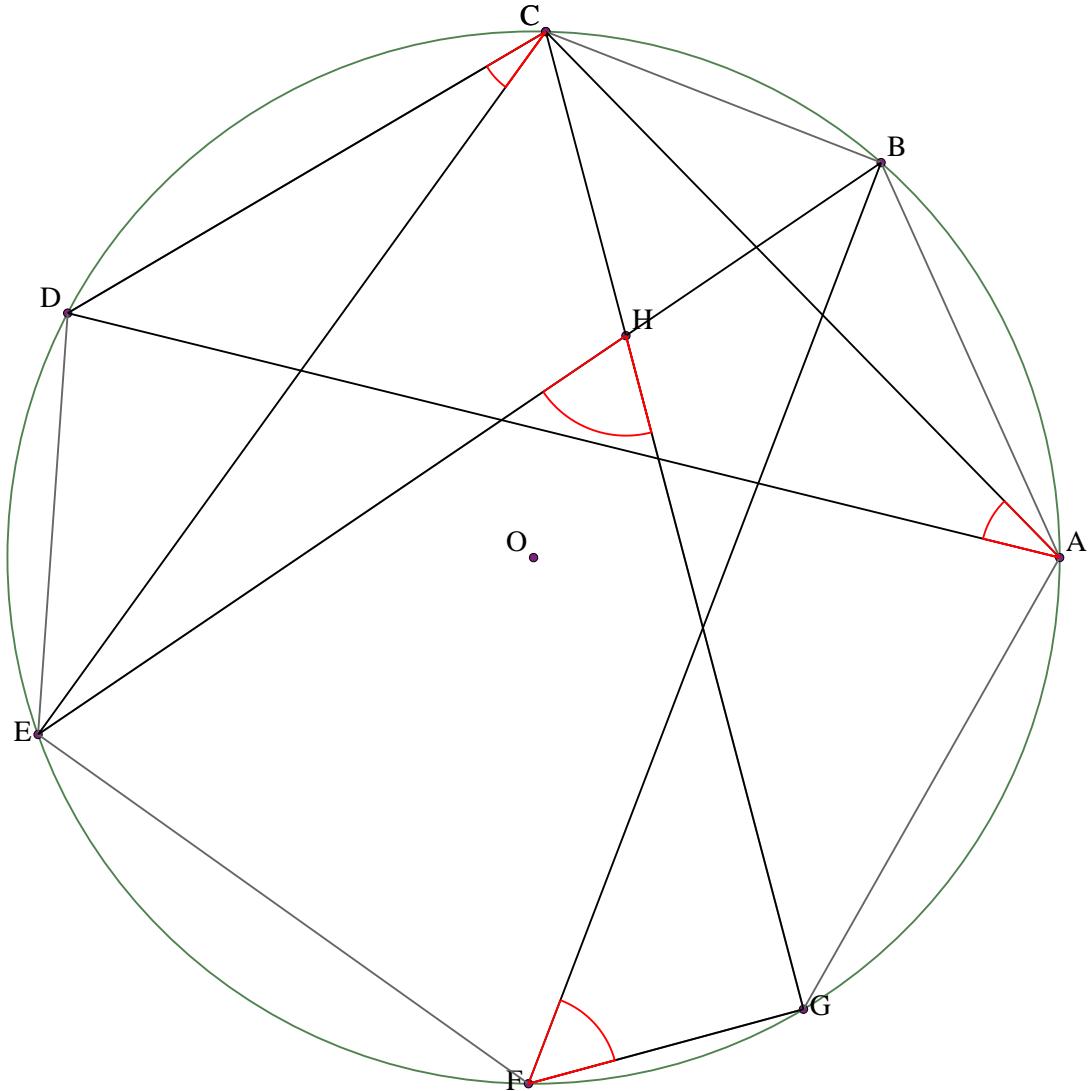
Find angle FCE .

Example 77



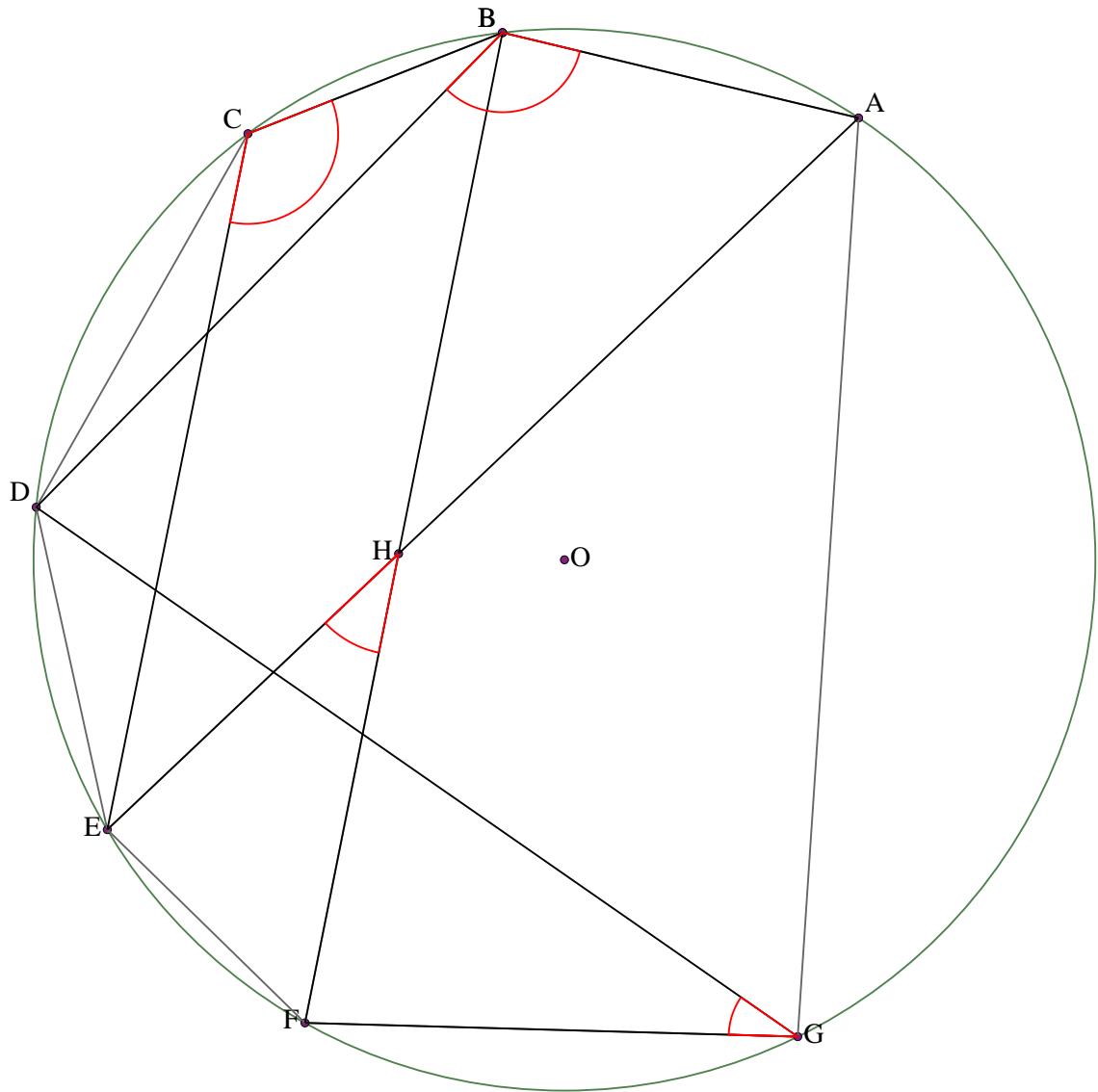
Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of BH and GF .
 Angle $FAD = x$. Angle $HEG = y$. Angle $HIG = z$.
 Find angle DCB .

Example 78



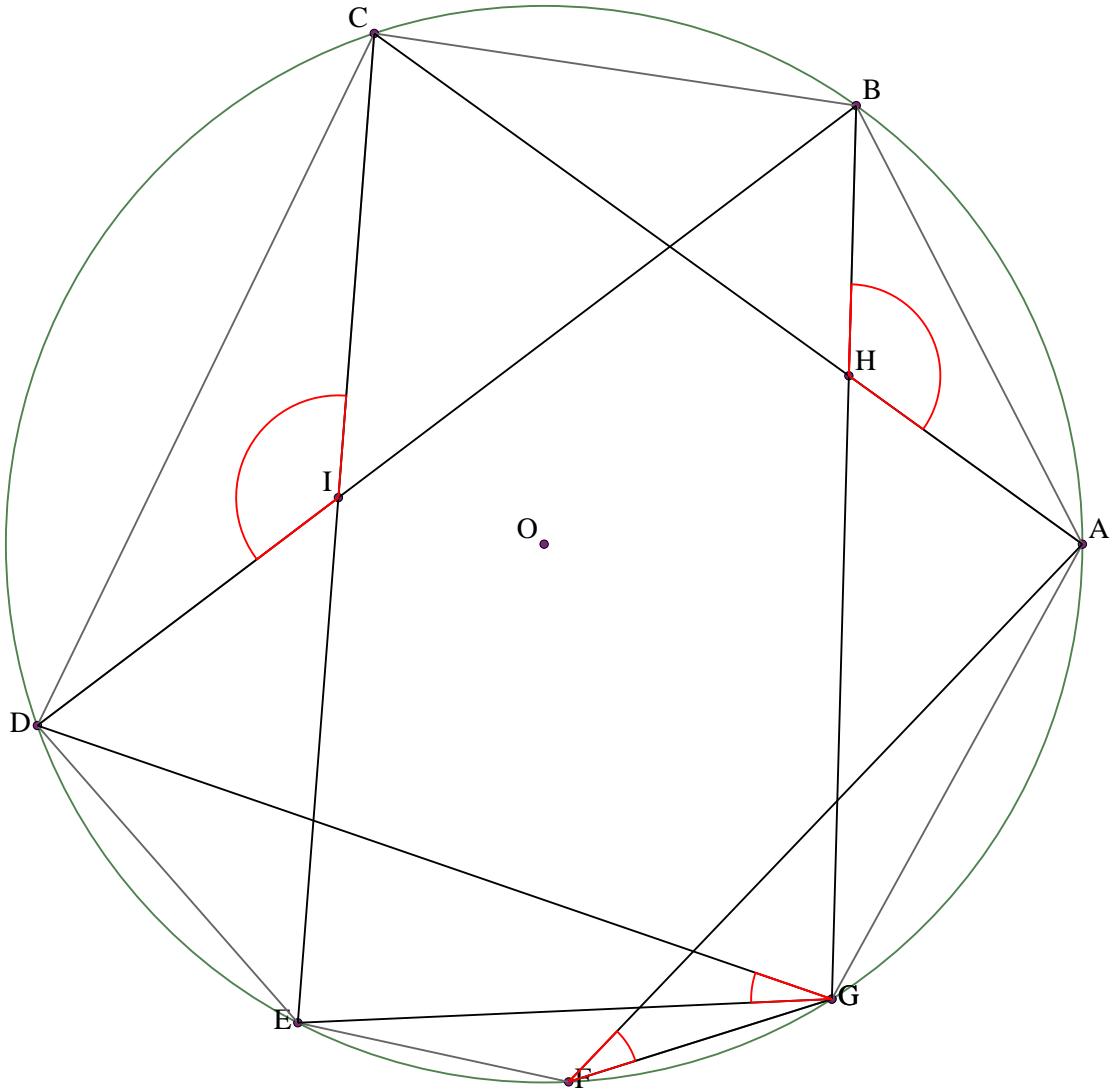
Let $ABCDEFG$ be a cyclic heptagon with center O . Let H be the intersection of CG and BE .
 Angle $ECD = x$. Angle $GFB = y$. Angle $GHE = z$.
 Find angle DAC .

Example 79



Let $ABCDEFG$ be a cyclic heptagon with center O . Let H be the intersection of AE and BF .
 Prove that $DGF+BCE = ABD+EHF$

Example 80

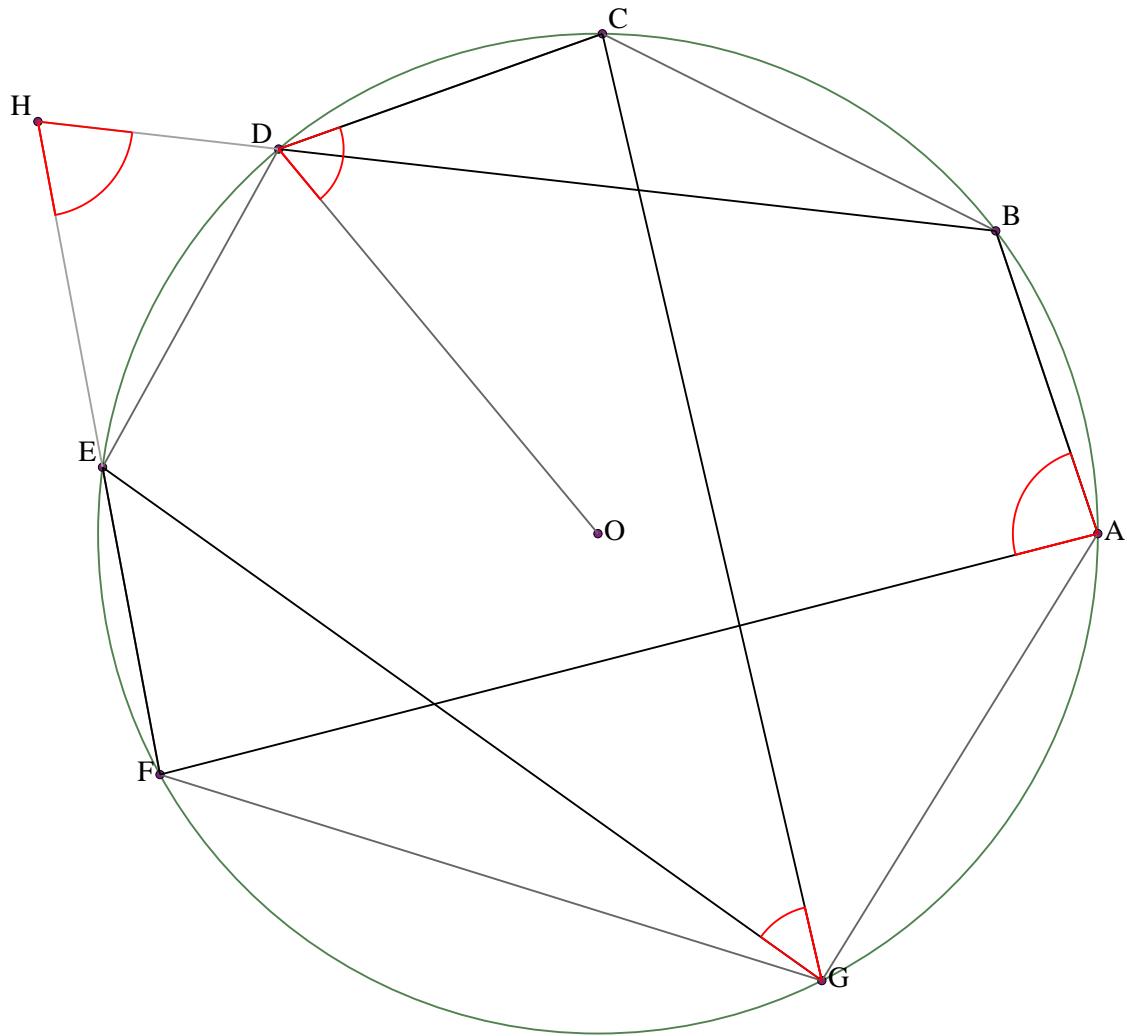


Let $ABCDEFG$ be a cyclic heptagon with center O . Let H be the intersection of GB and CA . Let I be the intersection of BD and EC .

Angle $AFG = x$. Angle $BHA = y$. Angle $DIC = z$.

Find angle DGE .

Example 81

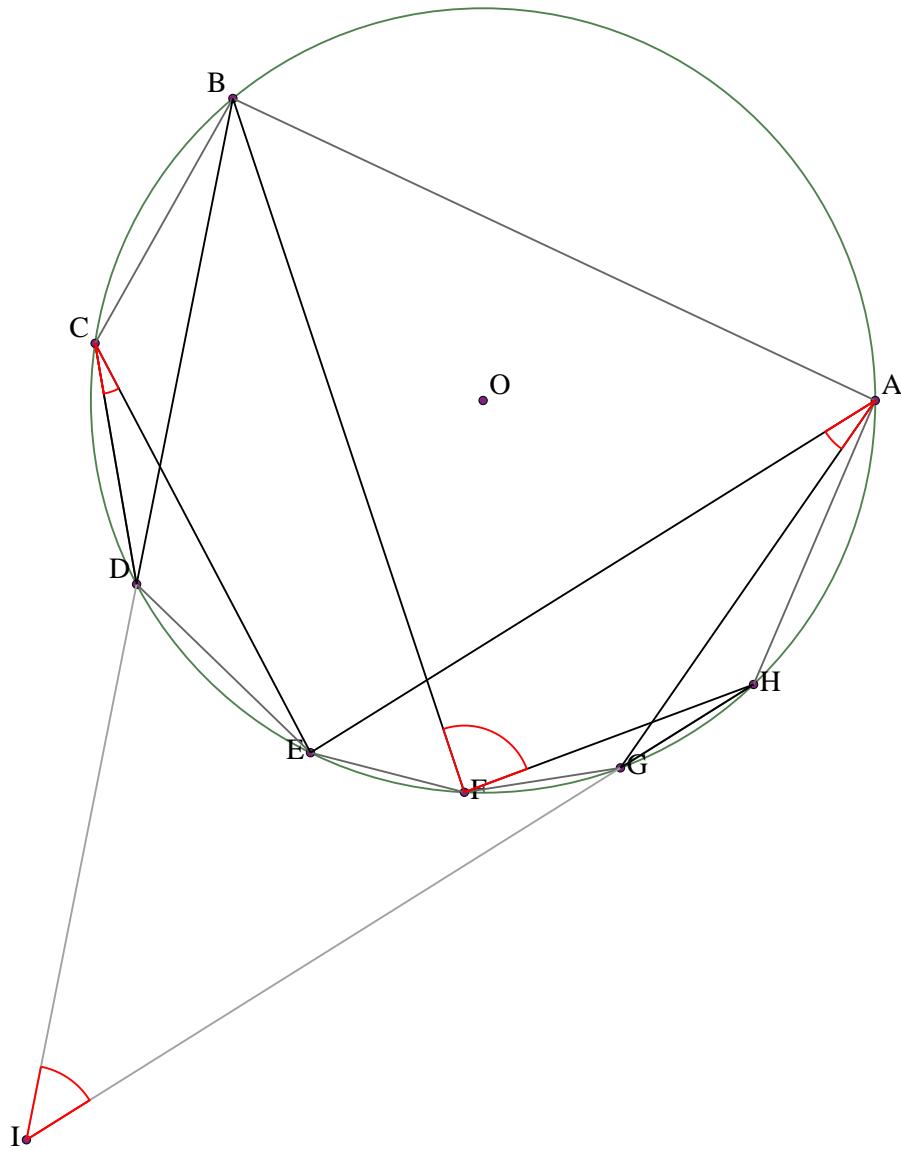


Let $ABCDEFG$ be a cyclic heptagon with center O . Let H be the intersection of EF and BD .

Angle $ODC = x$. Angle $FAB = y$. Angle $EHD = z$.

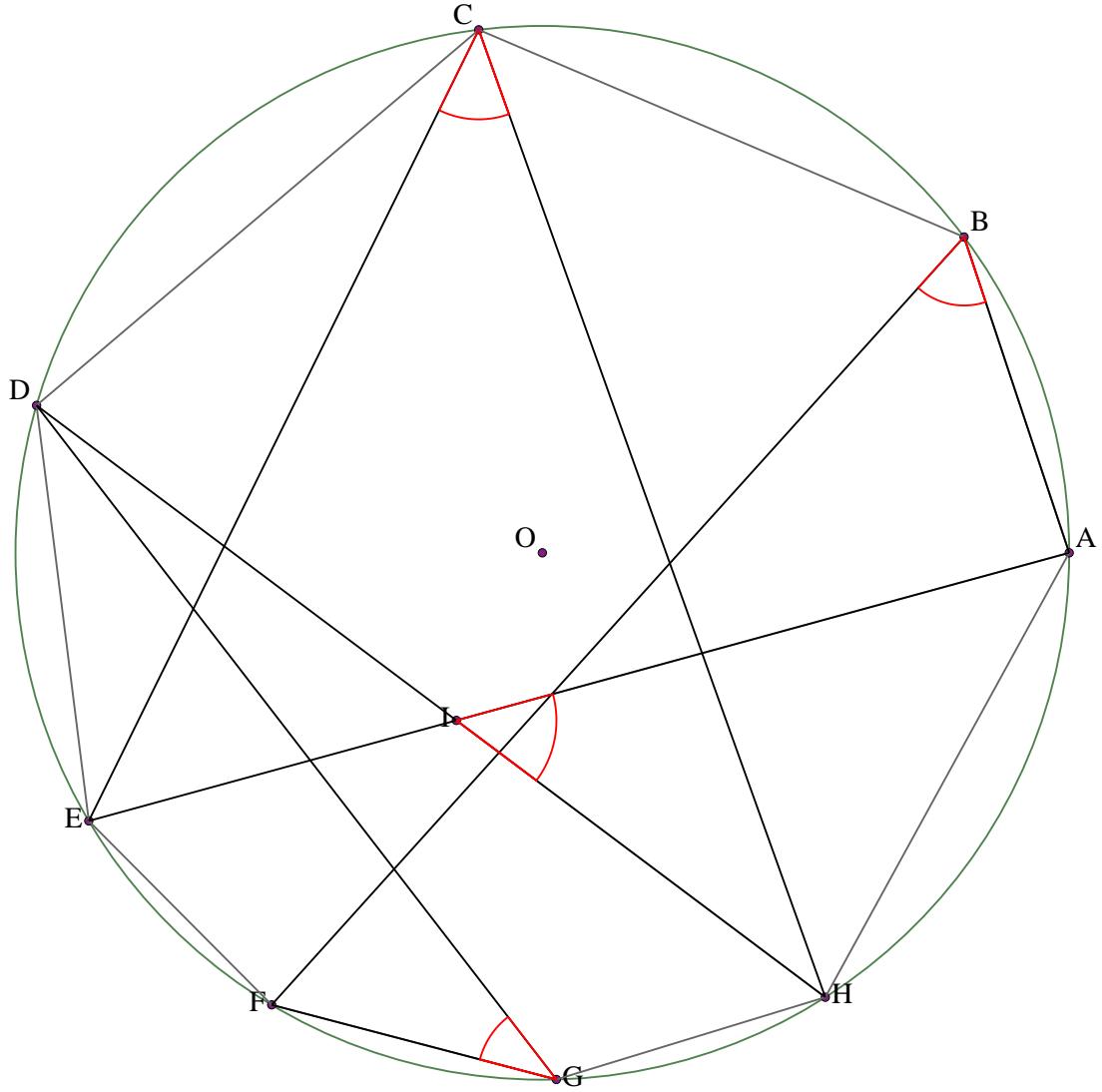
Find angle CGE .

Example 82



Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of GH and BD .
 Angle $HFB = x$. Angle $EAG = y$. Angle $GID = z$.
 Find angle DCE .

Example 83

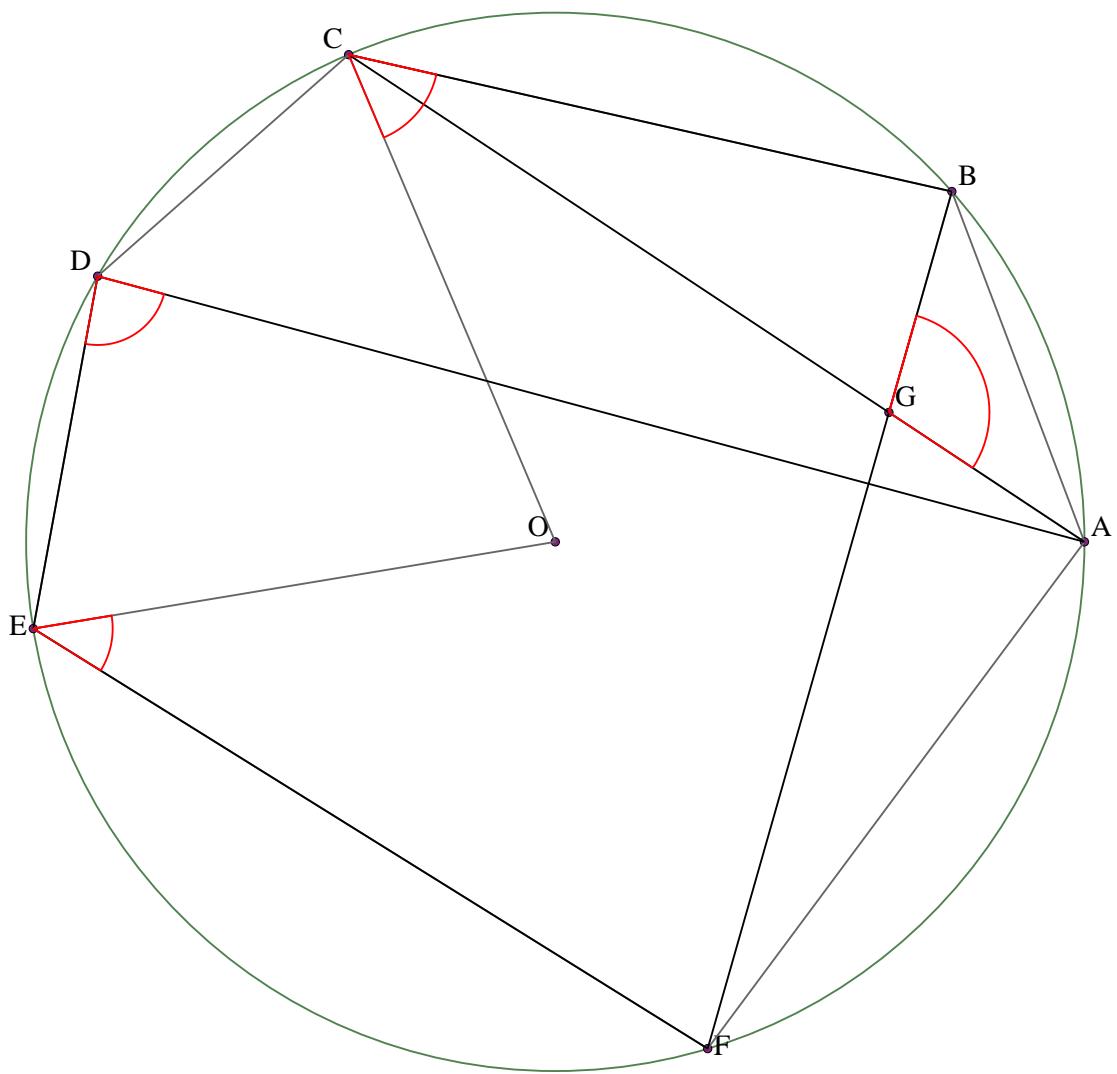


Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of DH and EA .

Angle $HCE = 46^\circ$. Angle $HIA = 52^\circ$. Angle $FGD = 38^\circ$.

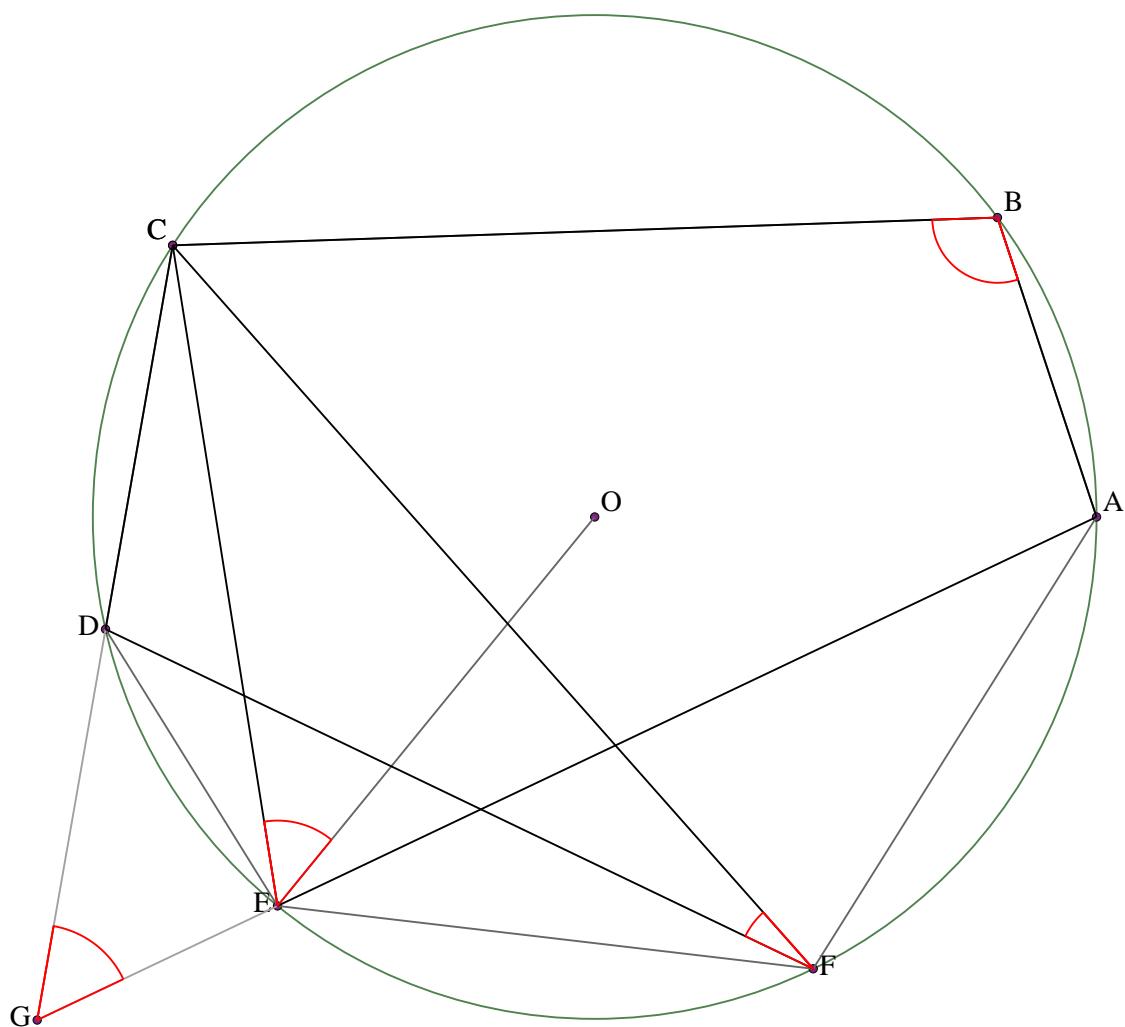
Find angle ABF .

Example 84



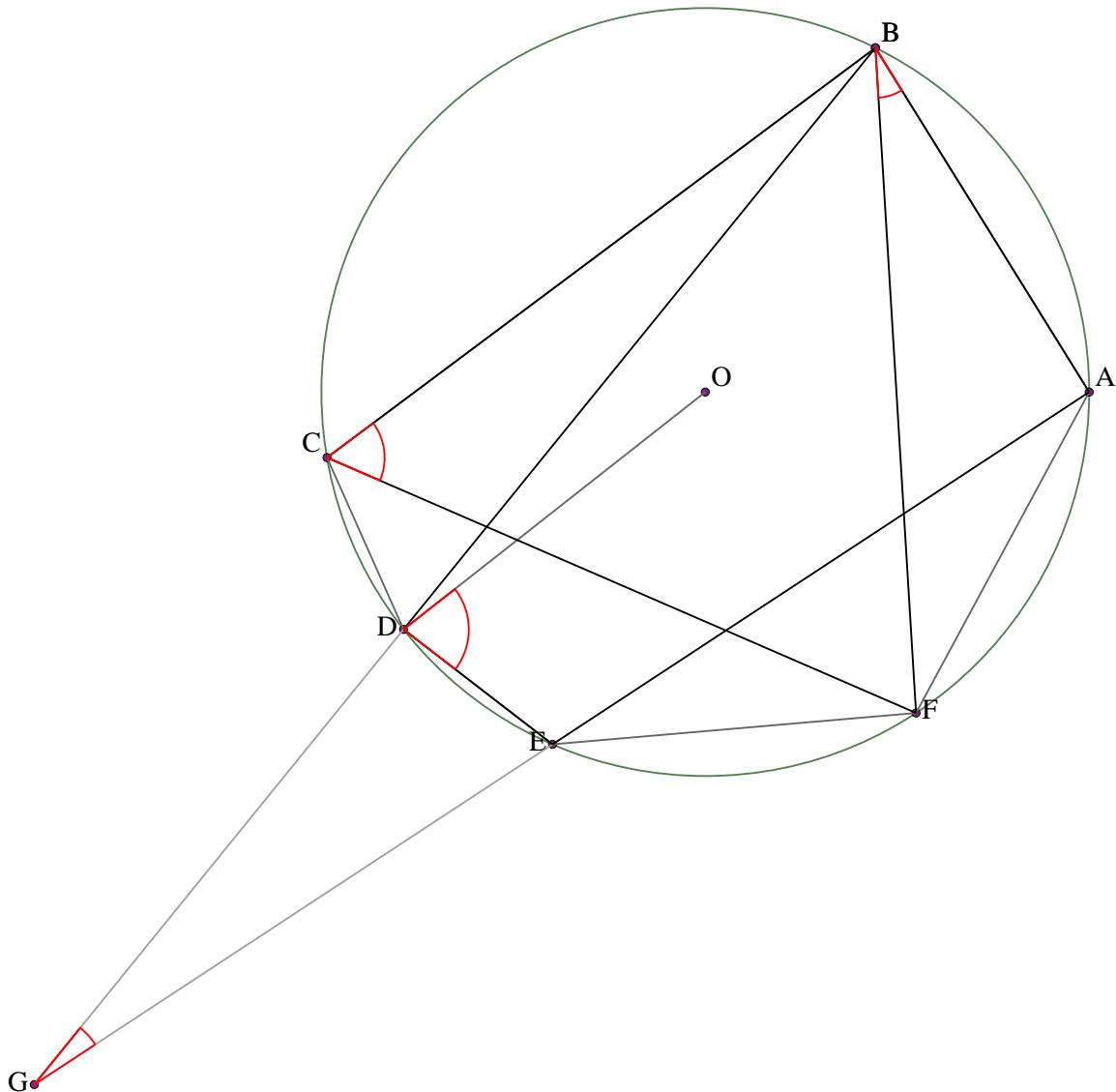
Let ABCDEF be a cyclic hexagon with center O. Let G be the intersection of FB and CA. Prove that $ADE + FEO + AGB = BCO + 180$

Example 85



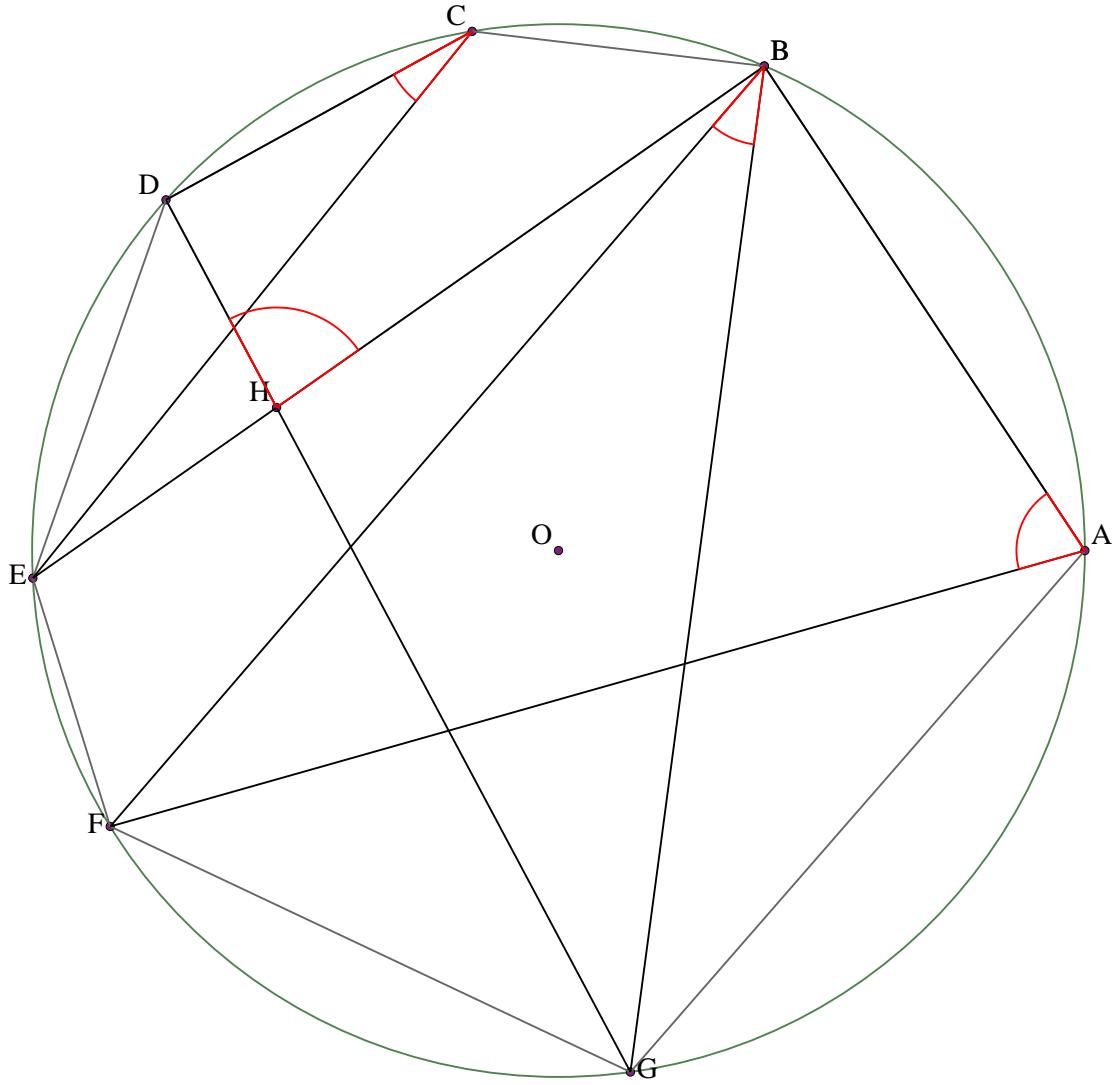
Let $ABCDEF$ be a cyclic hexagon with center O . Let G be the intersection of DC and EA .
 Prove that $ABC + DGE = CFD + CEO + 90^\circ$

Example 86



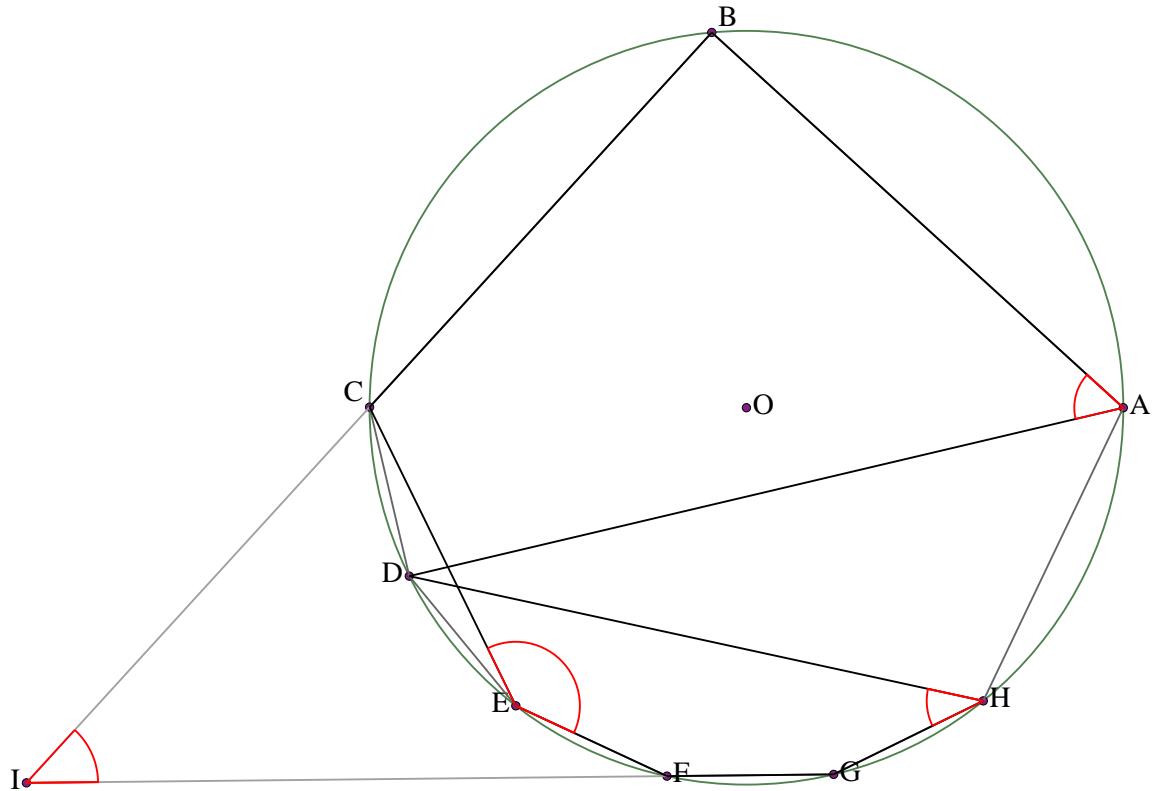
Let ABCDEF be a cyclic hexagon with center O. Let G be the intersection of BD and EA. Angle ABF = x. Angle DGE = y. Angle FCB = z. Find angle ODE.

Example 87



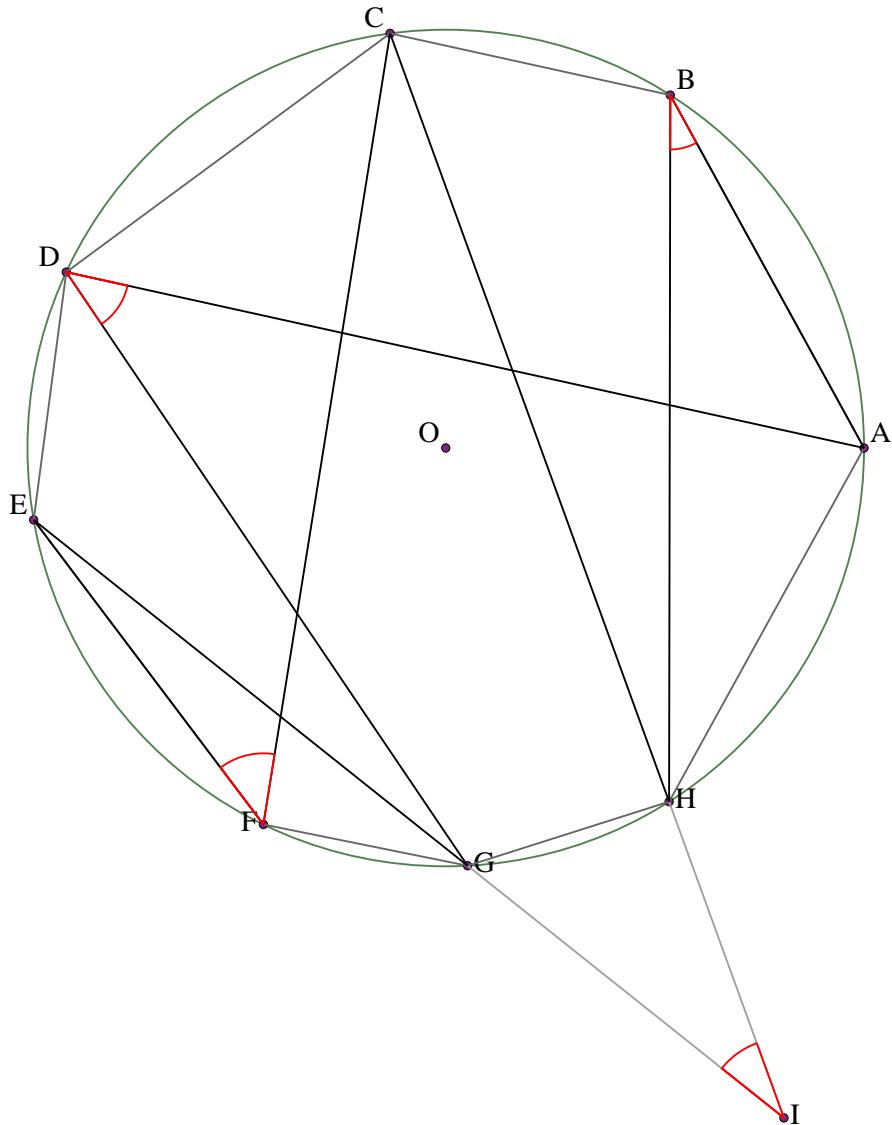
Let $ABCDEFG$ be a cyclic heptagon with center O . Let H be the intersection of GD and EB .
 Angle $DCE = x$. Angle $DHB = y$. Angle $FBG = z$.
 Find angle BAF .

Example 88



Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of GF and CB .
 Prove that $CEF = BAD + DHG + CIF$

Example 89

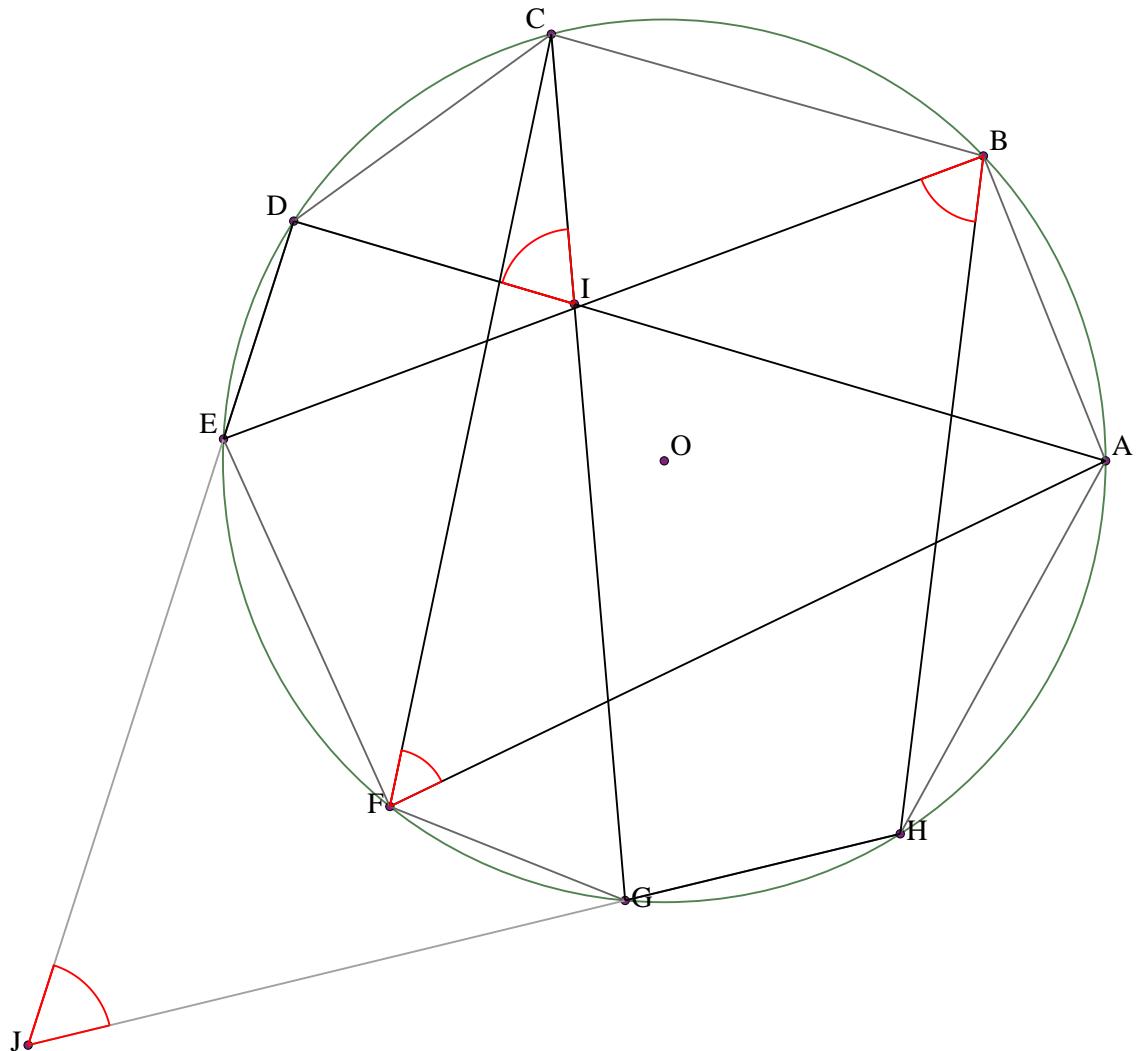


Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of GE and CH .

Angle $HBA = 29^\circ$. Angle $EFC = 46^\circ$. Angle $GIH = 31^\circ$.

Find angle ADG .

Example 90

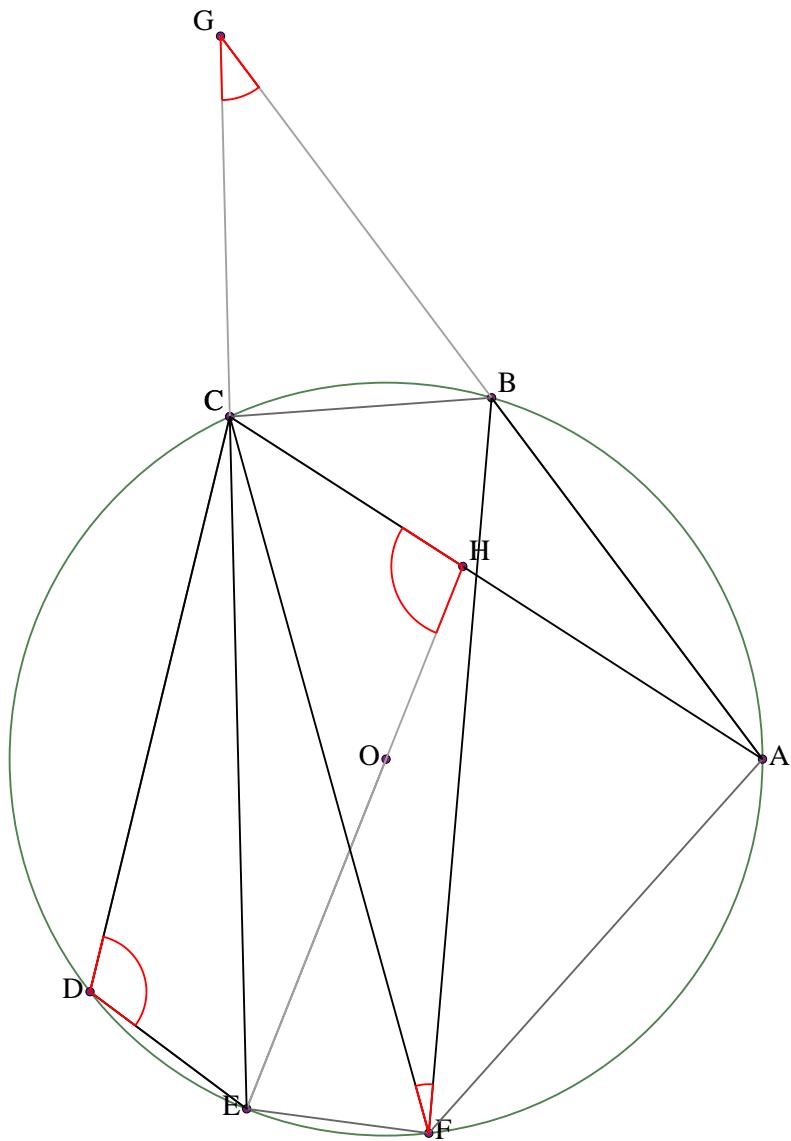


Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of AD and GC . Let J be the intersection of DE and HG .

Angle $CFA = x$. Angle $DIC = y$. Angle $EBH = z$.

Find angle EJG .

Example 91

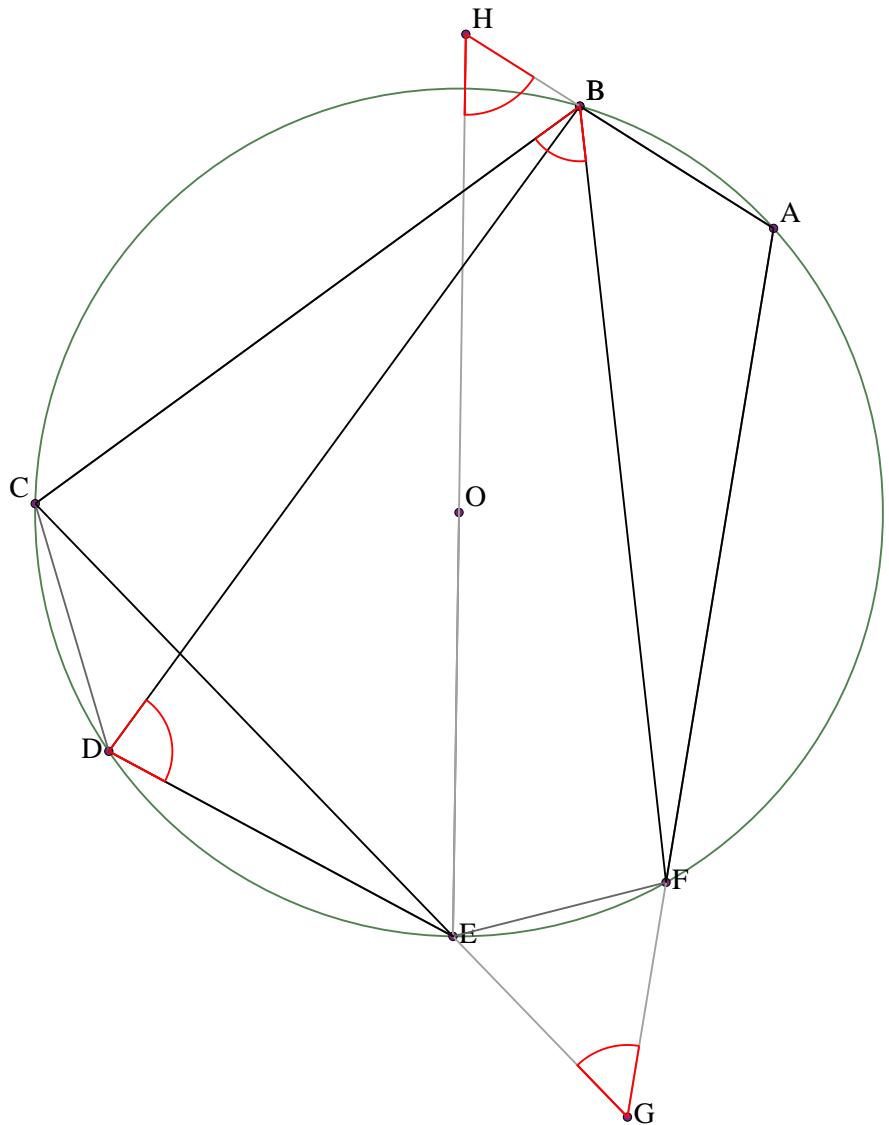


Let $ABCDEF$ be a cyclic hexagon with center O . Let G be the intersection of BA and EC . Let H be the intersection of AC and EO .

Angle $CFB = x$. Angle $BGC = y$. Angle $CHE = z$.

Find angle CDE .

Example 92

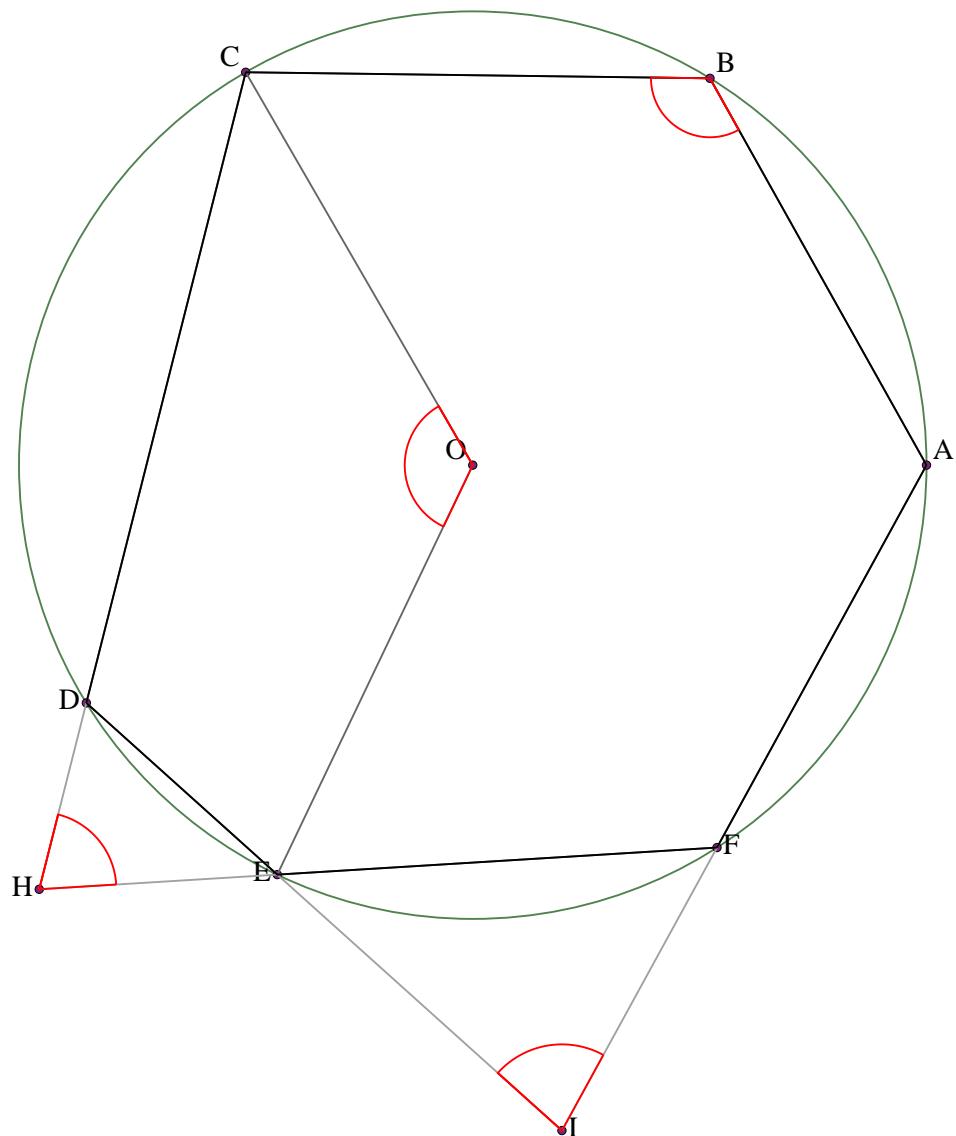


Let $ABCDEF$ be a cyclic hexagon with center O . Let G be the intersection of CE and AF . Let H be the intersection of OE and BA .

Angle $FBC = x$. Angle $EGF = y$. Angle $EHB = z$.

Find angle EDB .

Example 93

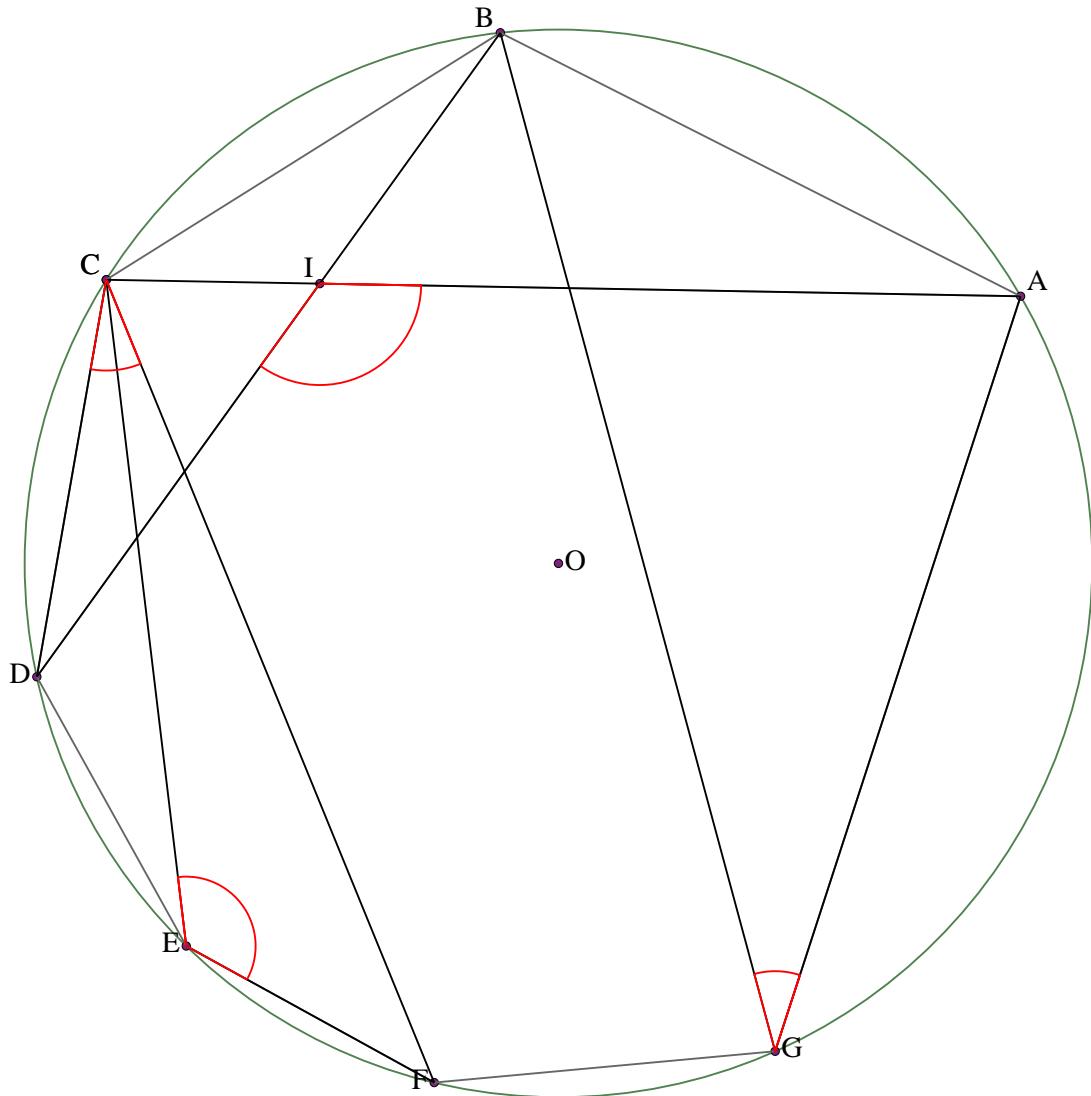


Let $ABCDEF$ be a cyclic hexagon with center O . Let H be the intersection of CD and EF . Let I be the intersection of DE and FA .

Angle $COE = 124^\circ$. Angle $DHE = 72^\circ$. Angle $ABC = 120^\circ$.

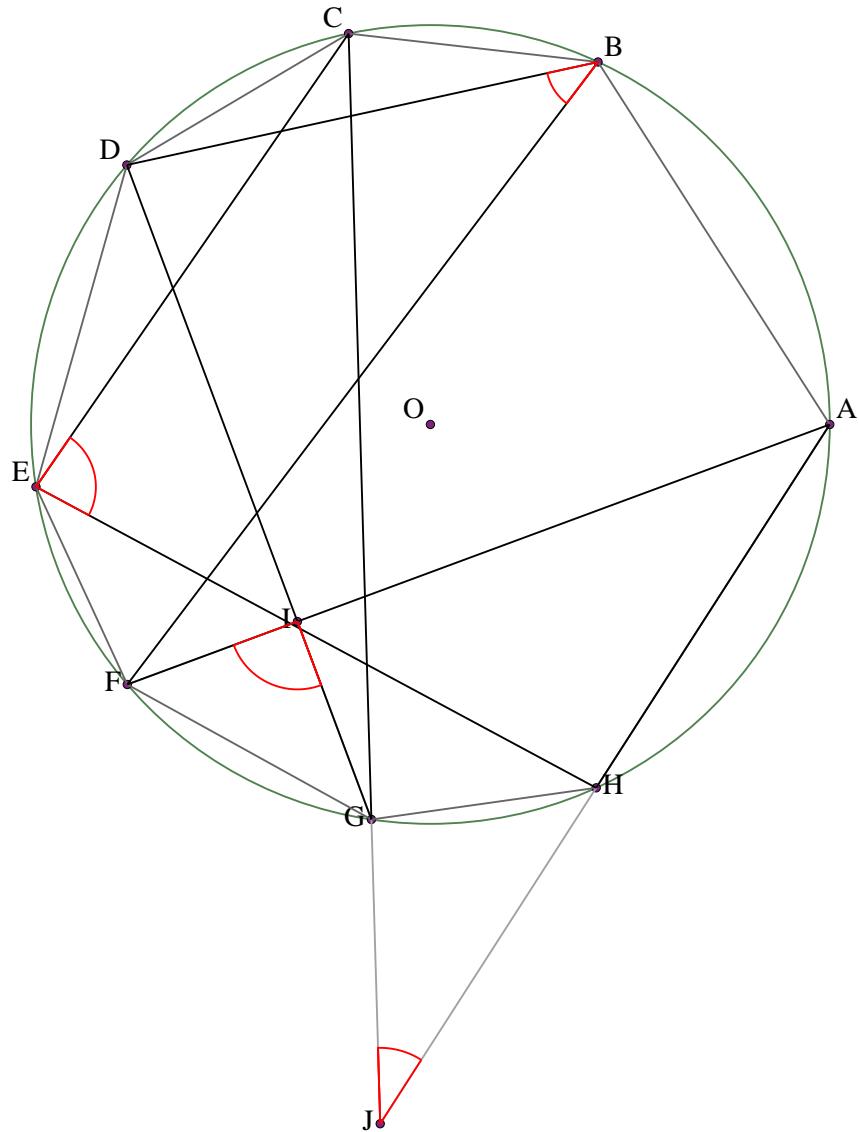
Find angle EIF .

Example 94



Let $ABCDEFG$ be a cyclic heptagon with center O . Let I be the intersection of CA and BD .
 Prove that $CEF + DCF = AGB + AID$

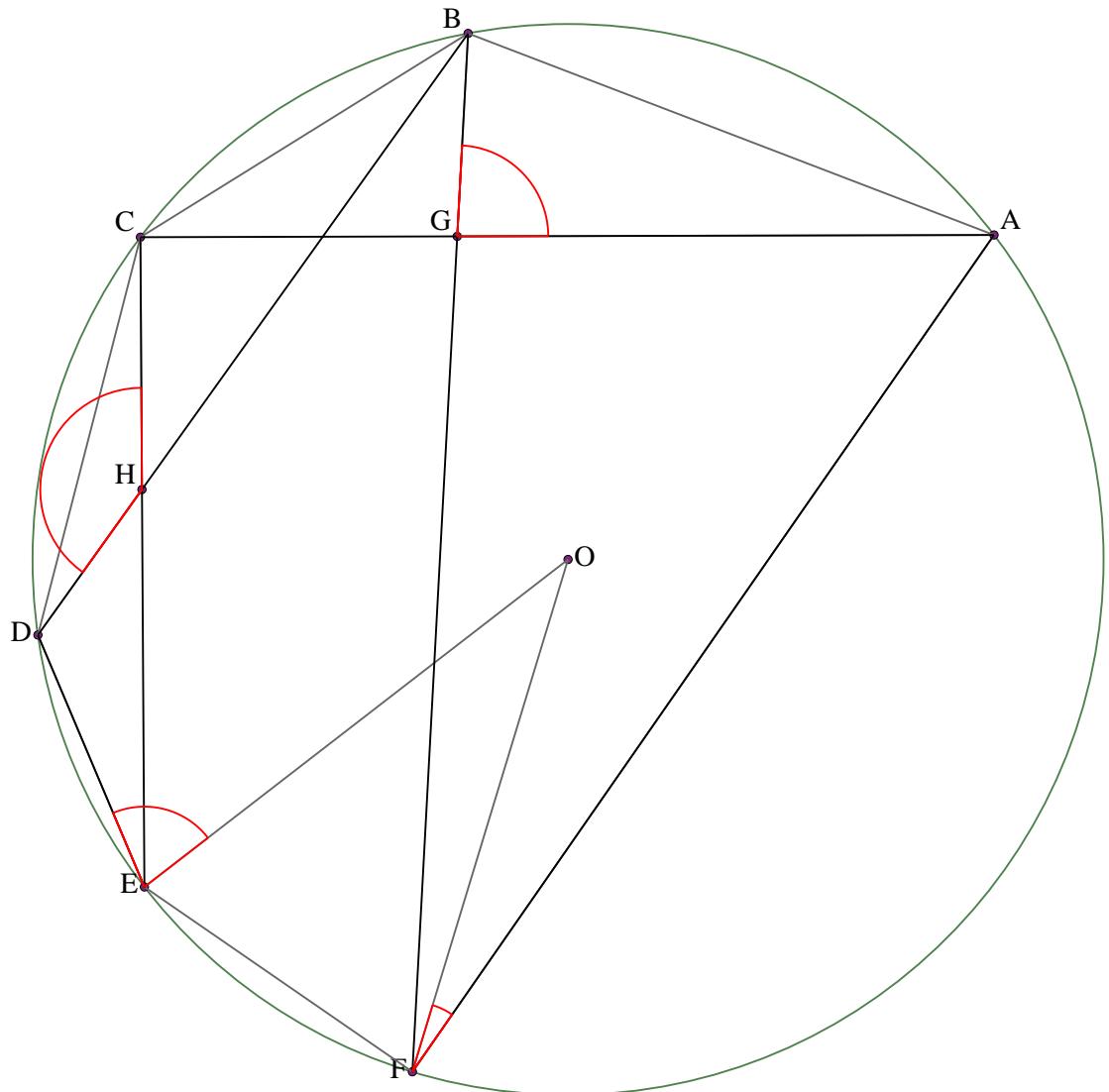
Example 95



Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of DG and AF . Let J be the intersection of GC and HA .

Prove that $DBF + CEH + FIG = GJH + 180$

Example 96

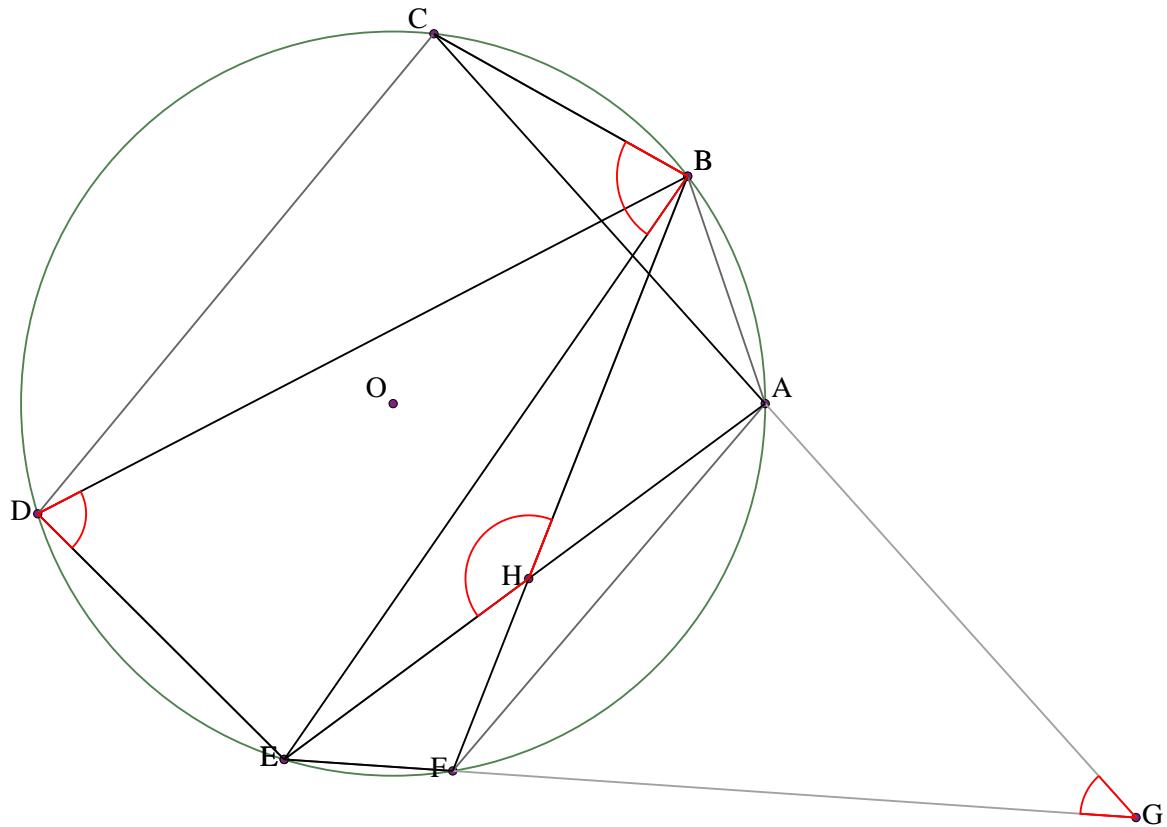


Let $ABCDEF$ be a cyclic hexagon with center O . Let G be the intersection of FB and CA . Let H be the intersection of BD and EC .

Angle $DEO = x$. Angle $BGA = y$. Angle $DHC = z$.

Find angle AFO .

Example 97

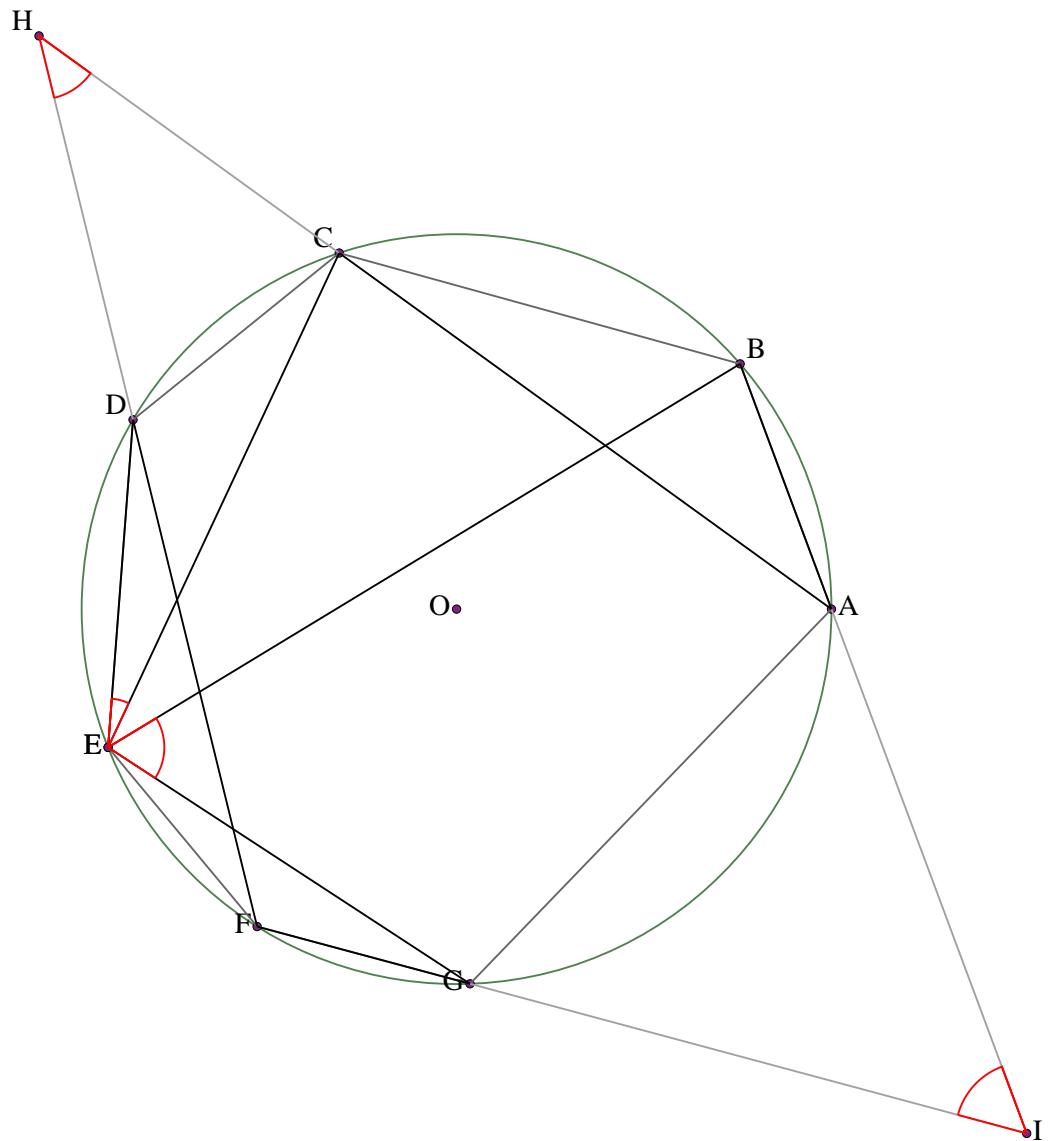


Let ABCDEF be a cyclic hexagon with center O. Let G be the intersection of EF and CA. Let H be the intersection of FB and AE.

Angle CBE = x. Angle BDE = y. Angle FGA = z.

Find angle BHE.

Example 98

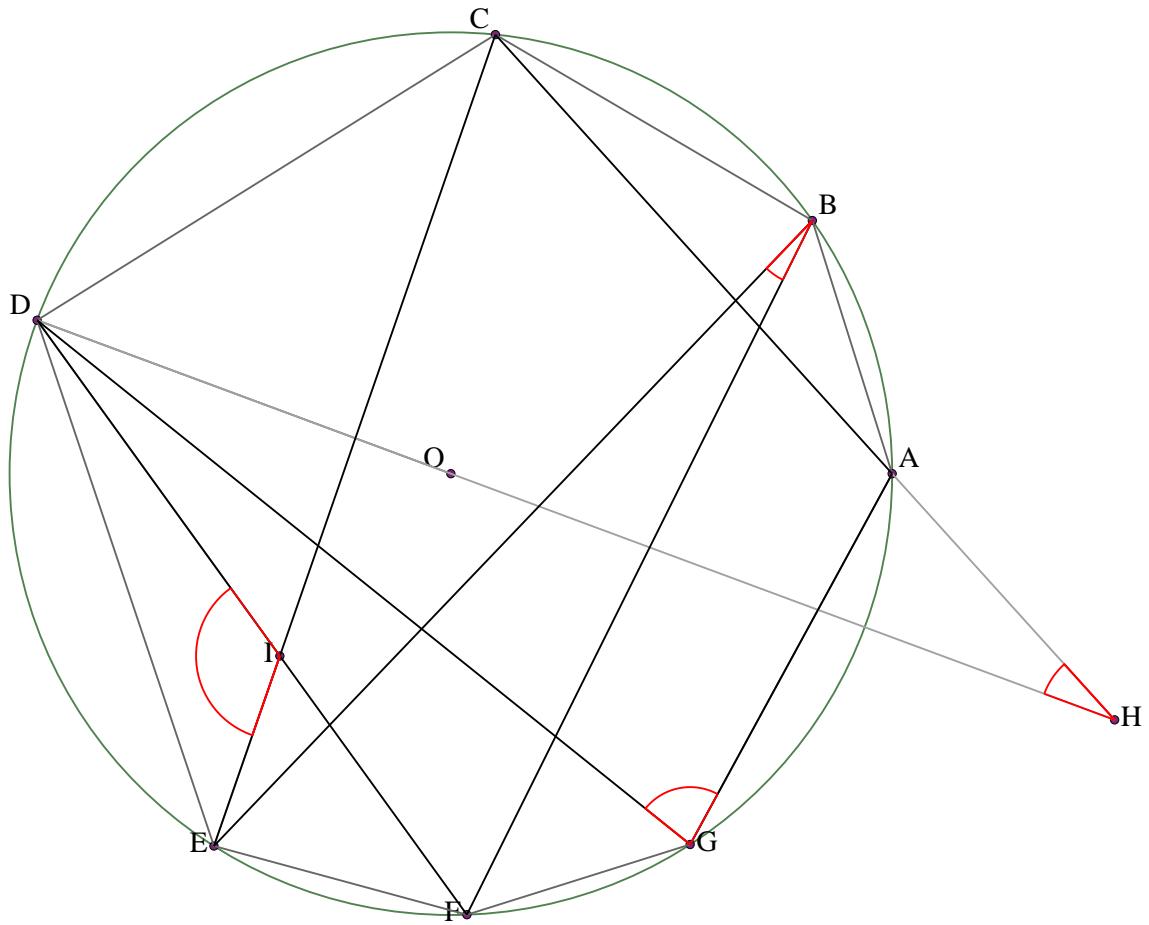


Let $ABCDEFG$ be a cyclic heptagon with center O . Let H be the intersection of CA and FD . Let I be the intersection of AB and GF .

Angle $DEC = 21^\circ$. Angle $CHD = 40^\circ$. Angle $AIG = 55^\circ$.

Find angle BEG .

Example 99

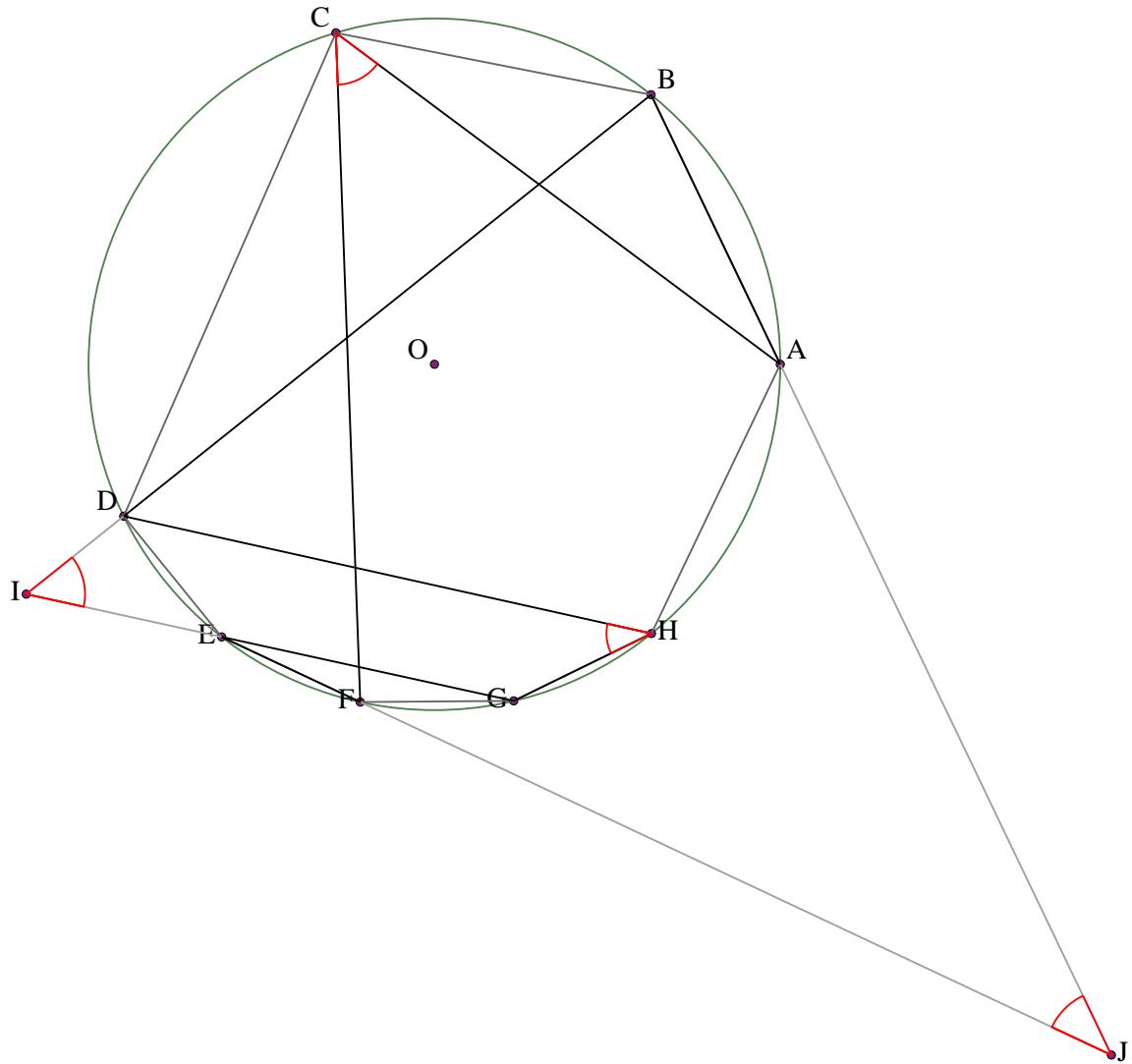


Let $ABCDEFG$ be a cyclic heptagon with center O . Let H be the intersection of AC and DO . Let I be the intersection of CE and FD .

Angle $DGA = x$. Angle $AHD = y$. Angle $EID = z$.

Find angle EBF .

Example 100

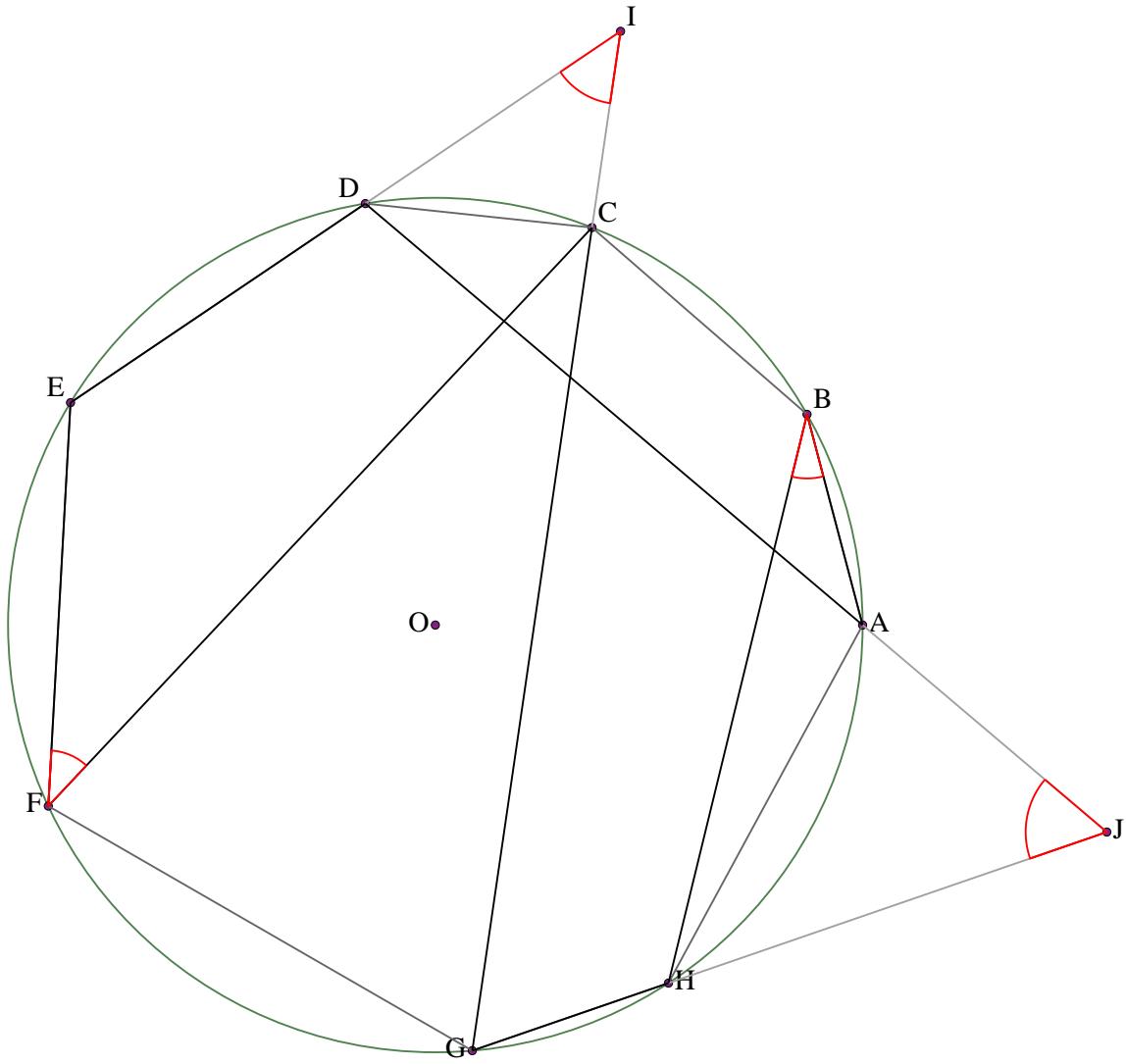


Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of GE and BD . Let J be the intersection of EF and AB .

Angle $DHG = 39^\circ$. Angle $EID = 51^\circ$. Angle $FJA = 39^\circ$.

Find angle FCA .

Example 101

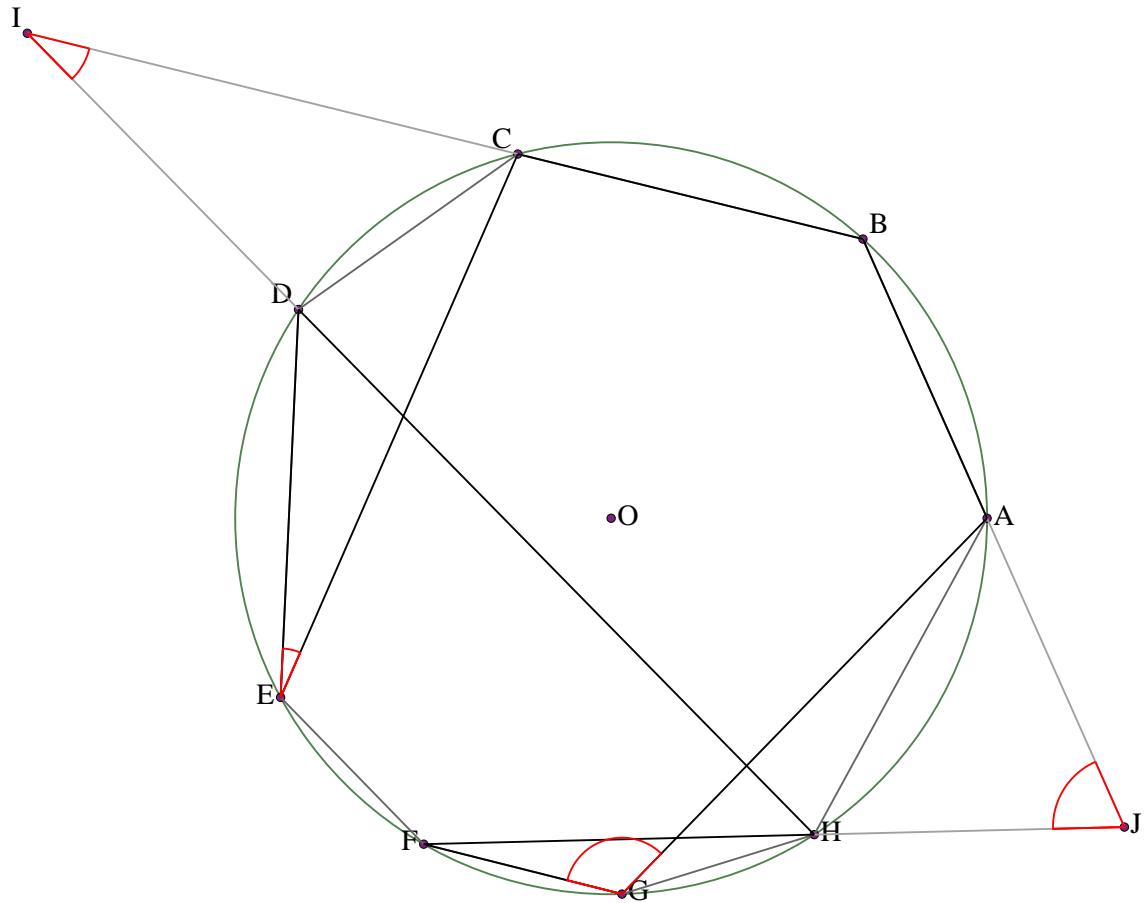


Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of CG and DE . Let J be the intersection of GH and AD .

Angle $HBA = 28^\circ$. Angle $HJA = 59^\circ$. Angle $EFC = 40^\circ$.

Find angle CID .

Example 102

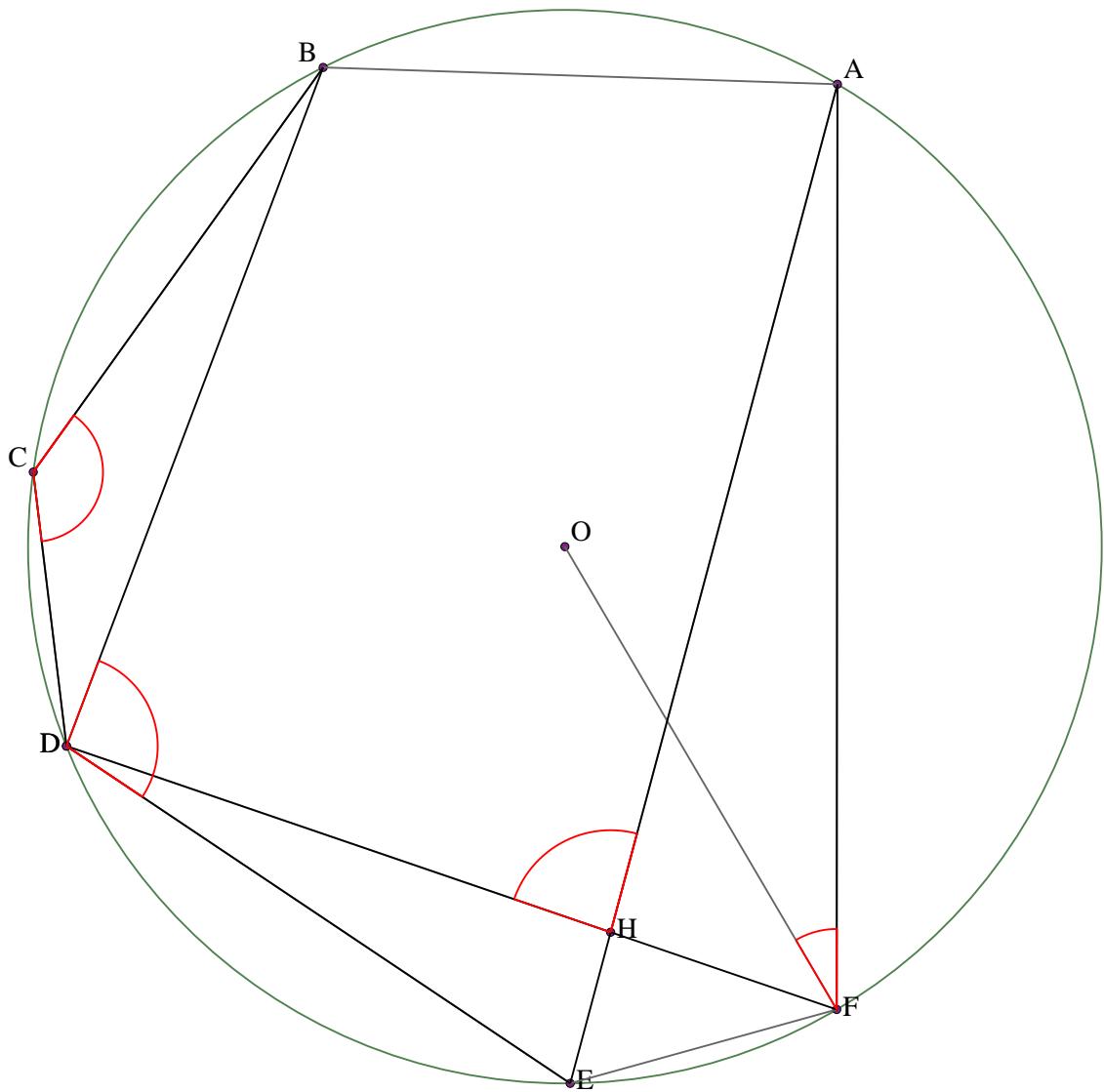


Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of DH and BC . Let J be the intersection of HF and AB .

Angle $FGA = x$. Angle $DIC = y$. Angle $HJA = z$.

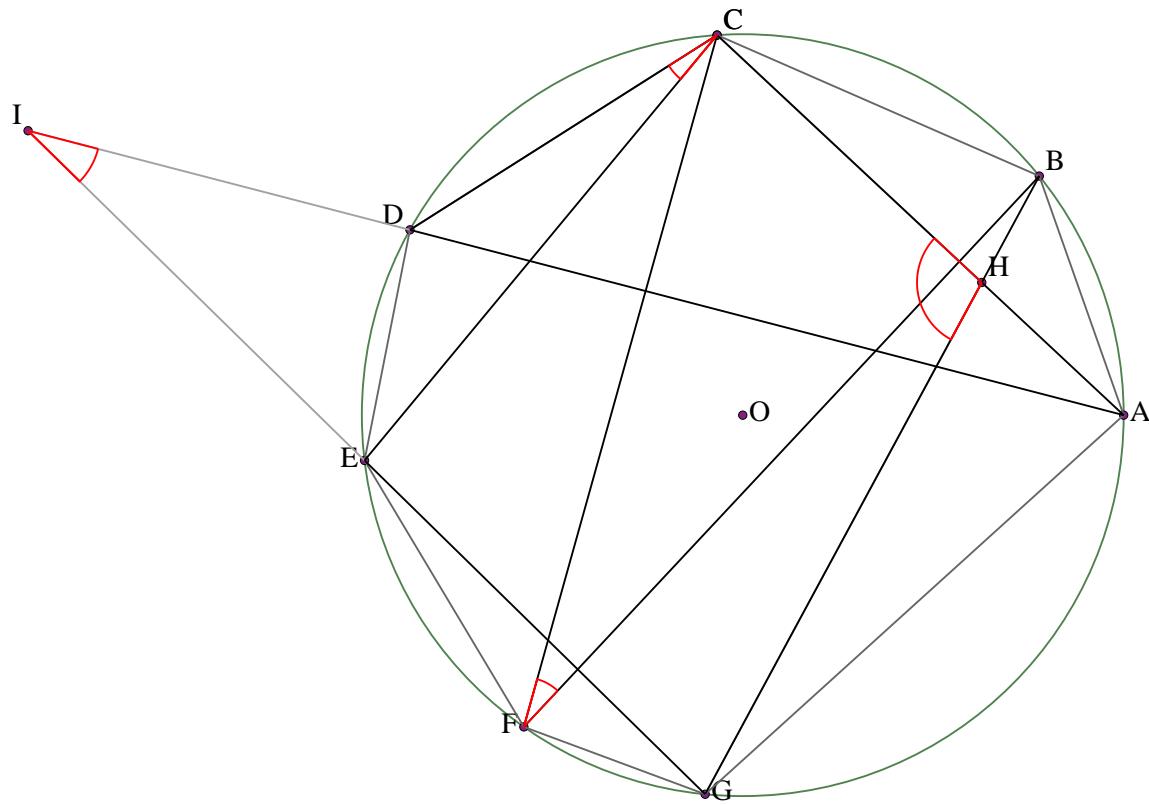
Find angle CED .

Example 103



Let $ABCDEF$ be a cyclic hexagon with center O . Let H be the intersection of EA and FD .
 Prove that $BCD + AHD = AFO + BDE + 90^\circ$

Example 104

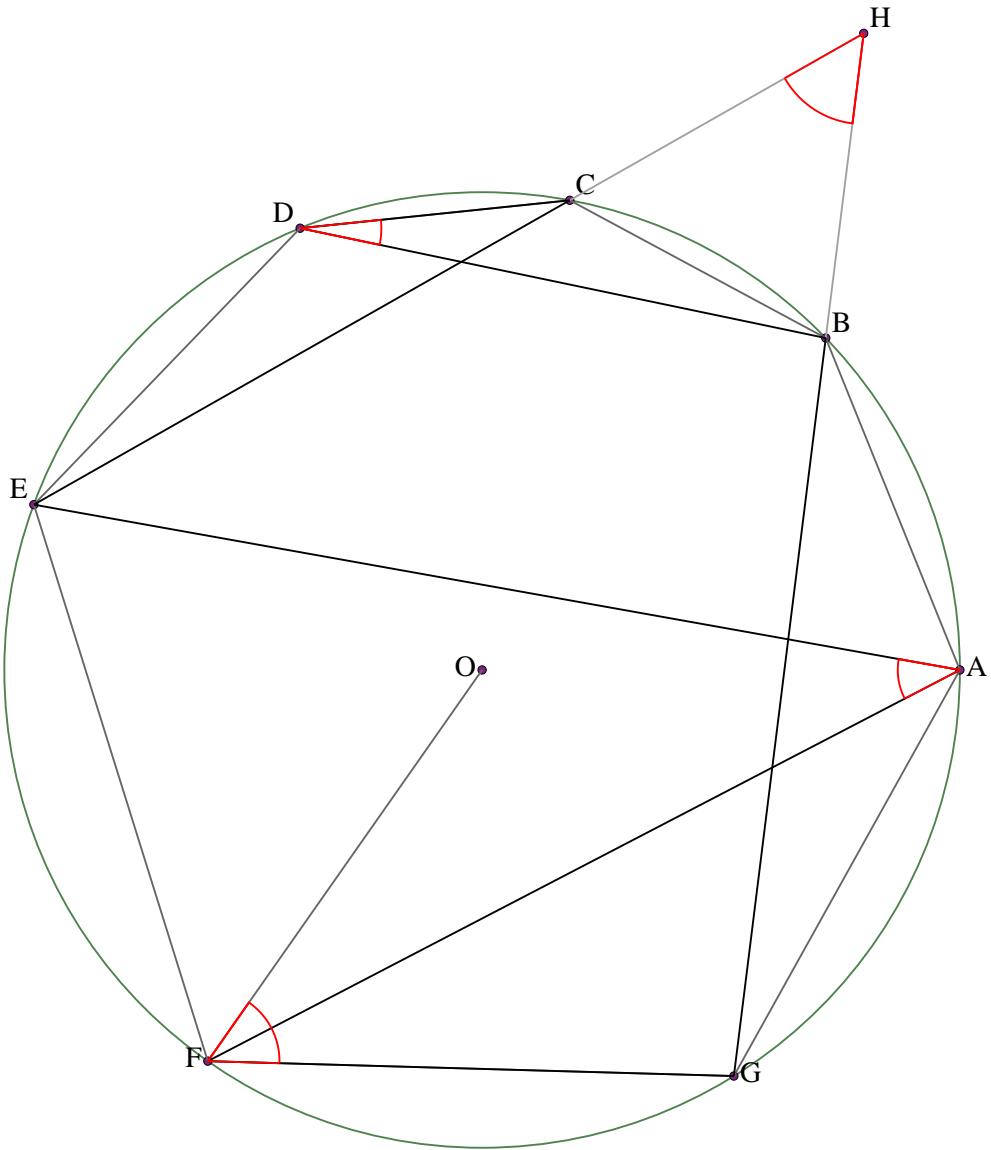


Let ABCDEFG be a cyclic heptagon with center O. Let H be the intersection of BG and AC. Let I be the intersection of GE and DA.

Angle $CFB = x$. Angle $ECD = y$. Angle $EID = z$.

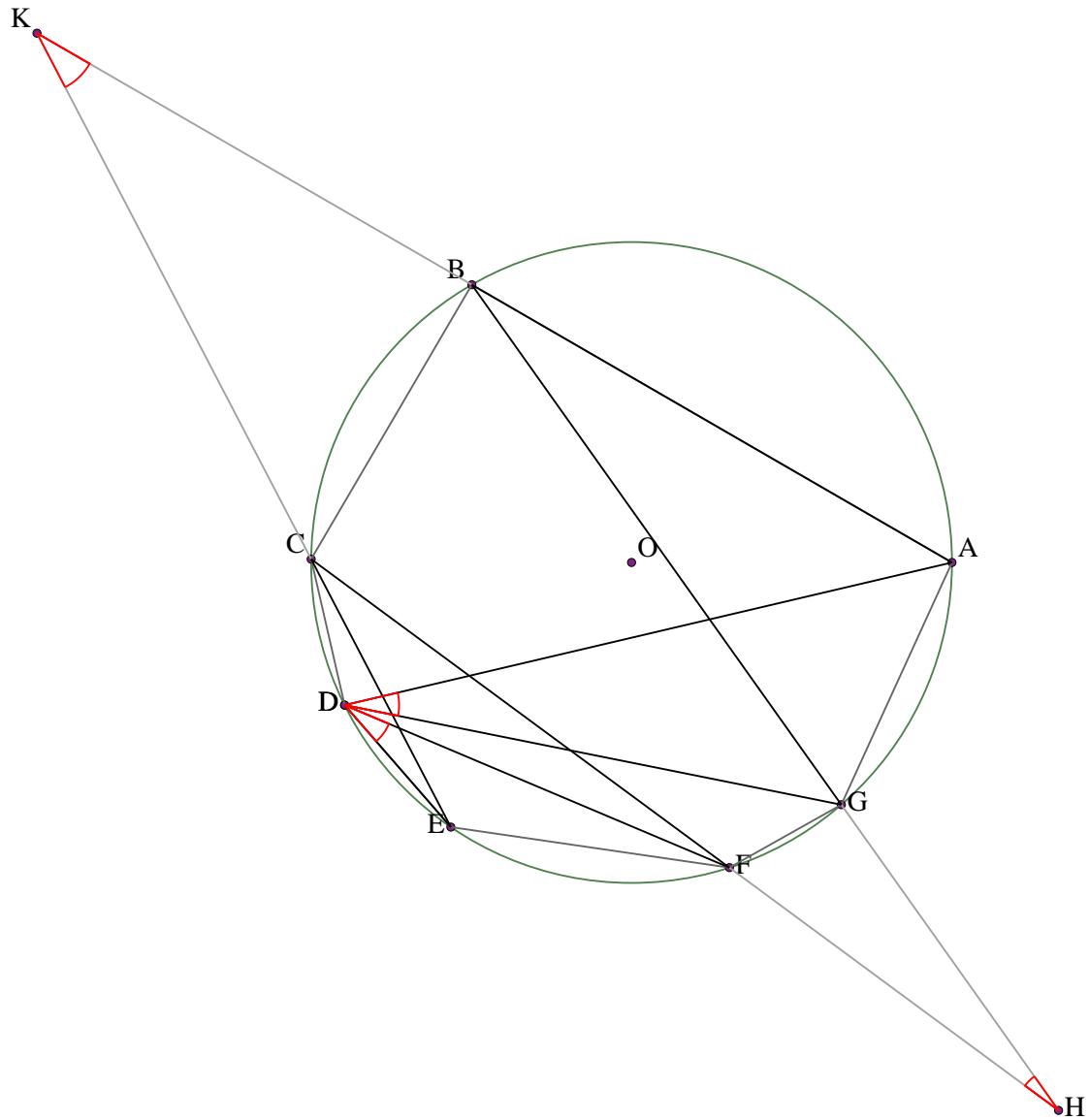
Find angle GHC .

Example 105



Let $ABCDEFG$ be a cyclic heptagon with center O . Let H be the intersection of GB and CE .
 Prove that $GFO + BDC + BHC = EAF + 90^\circ$

Example 106

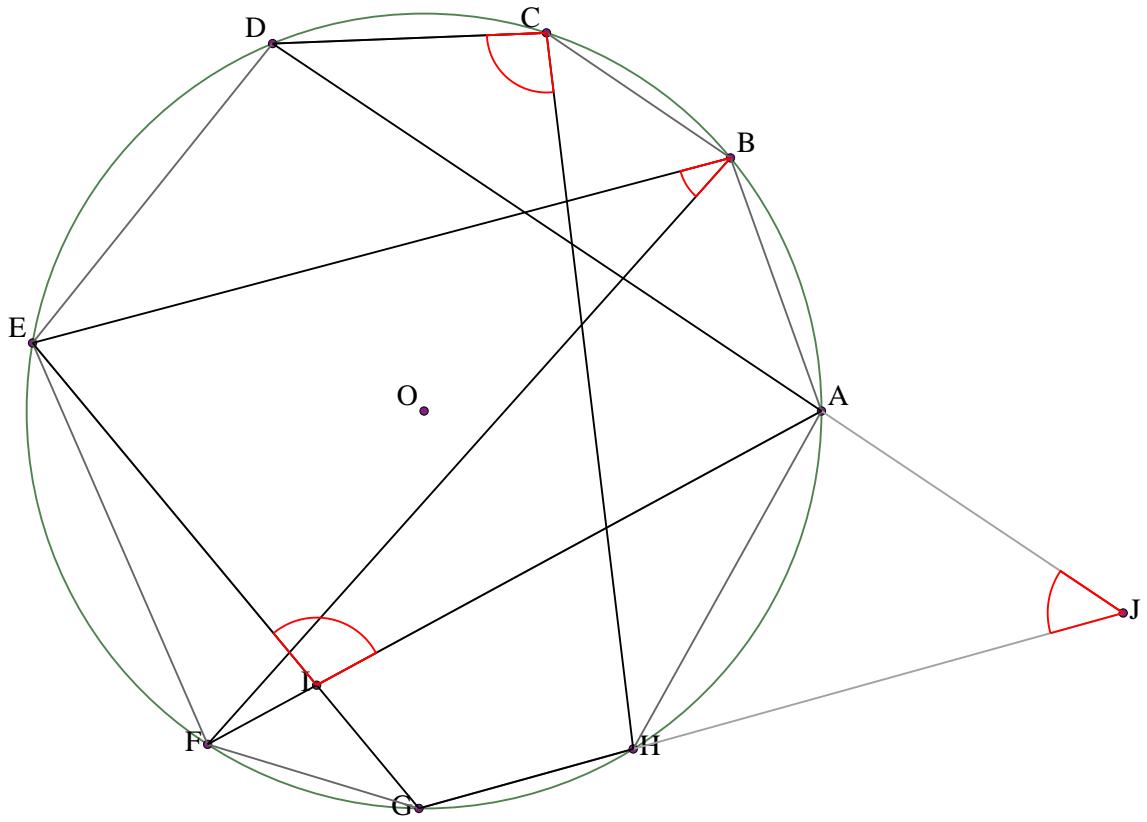


Let $ABCDEFG$ be a cyclic heptagon with center O . Let H be the intersection of CF and GB . Let K be the intersection of BA and EC .

Angle $FDE = x$. Angle $GDA = y$. Angle $BKC = z$.

Find angle FHG .

Example 107

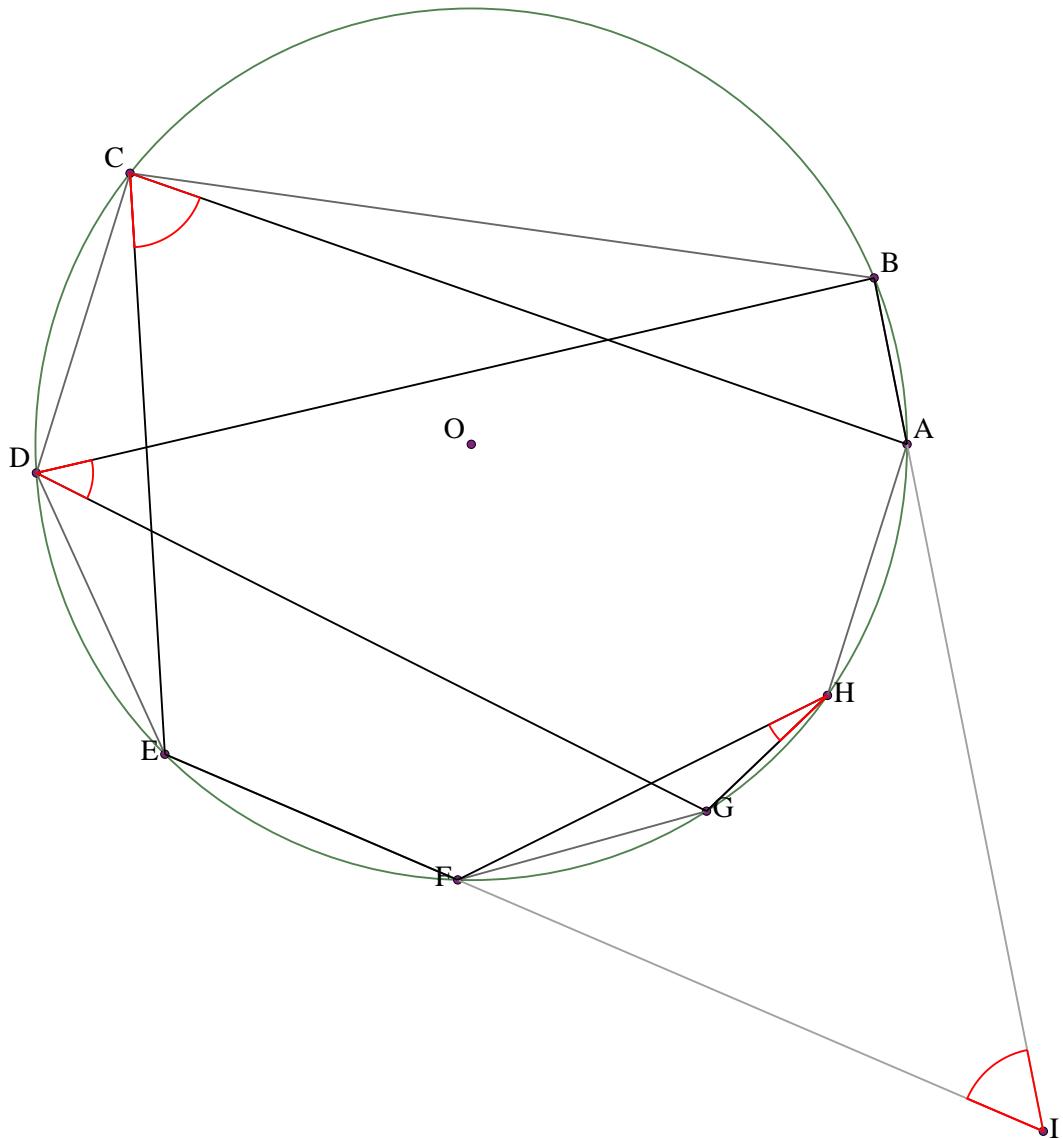


Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of FA and GE . Let J be the intersection of AD and HG .

Angle $AJH = 49^\circ$. Angle $EBF = 33^\circ$. Angle $AIE = 101^\circ$.

Find angle DCH .

Example 108

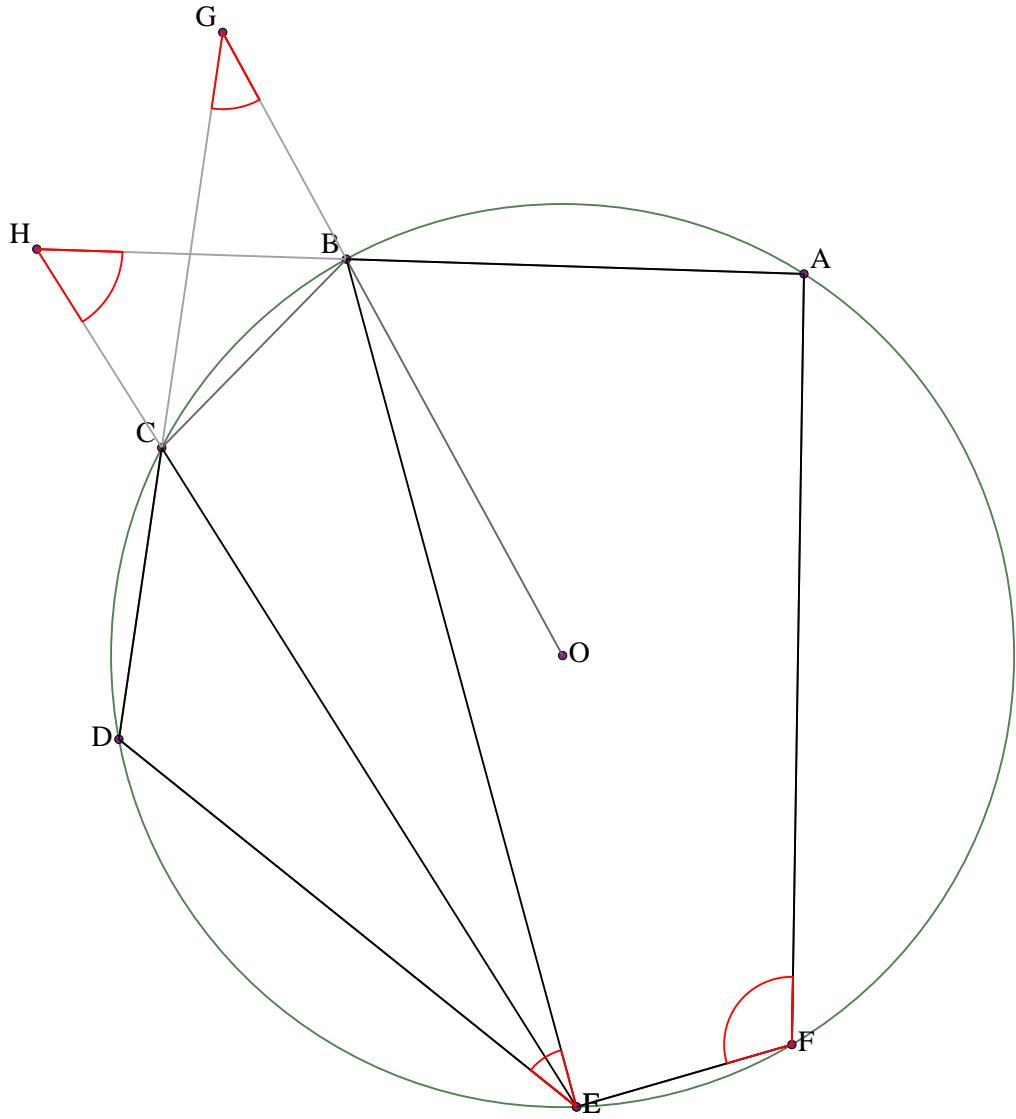


Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of FE and AB .

Angle $BDG = 40^\circ$. Angle $GHF = 17^\circ$. Angle $ECA = 67^\circ$.

Find angle FIA .

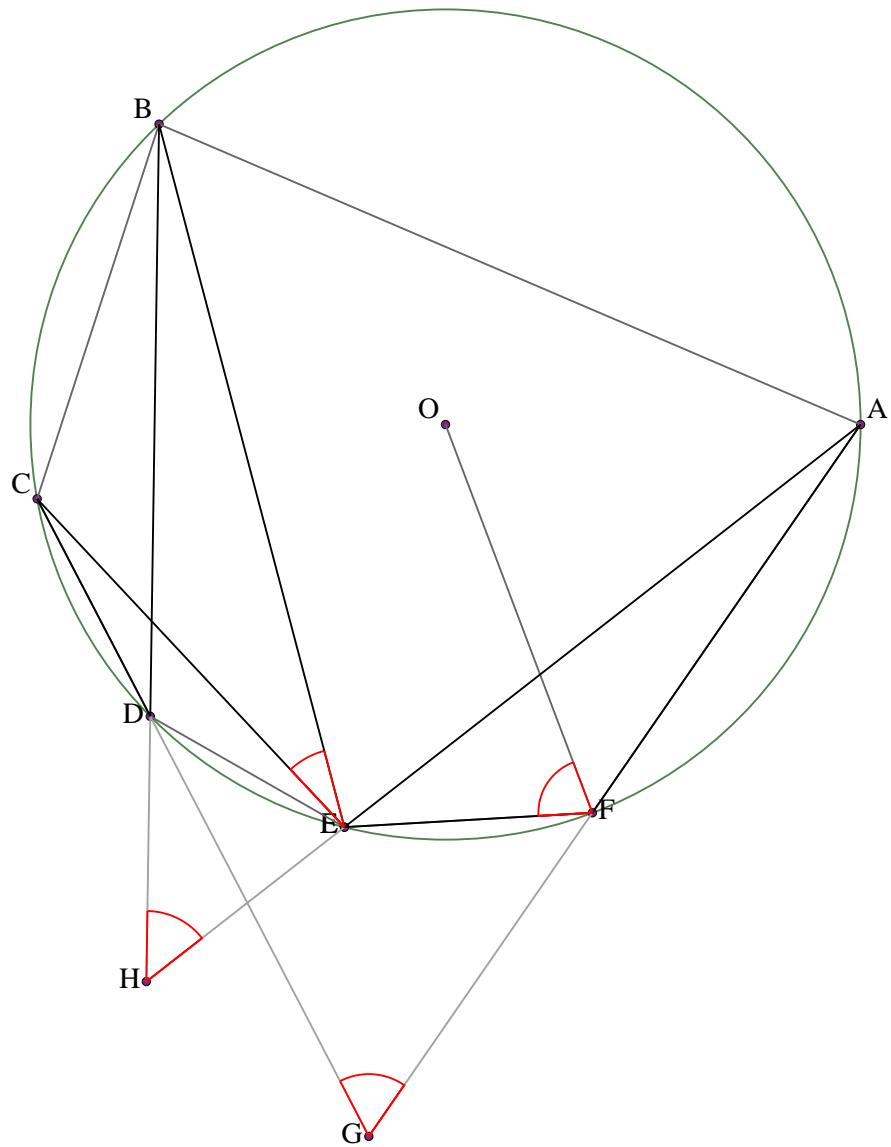
Example 109



Let $ABCDEF$ be a cyclic hexagon with center O . Let G be the intersection of OB and CD . Let H be the intersection of BA and EC .

Prove that $AFE + BHC = BED + BGC + 90^\circ$

Example 110

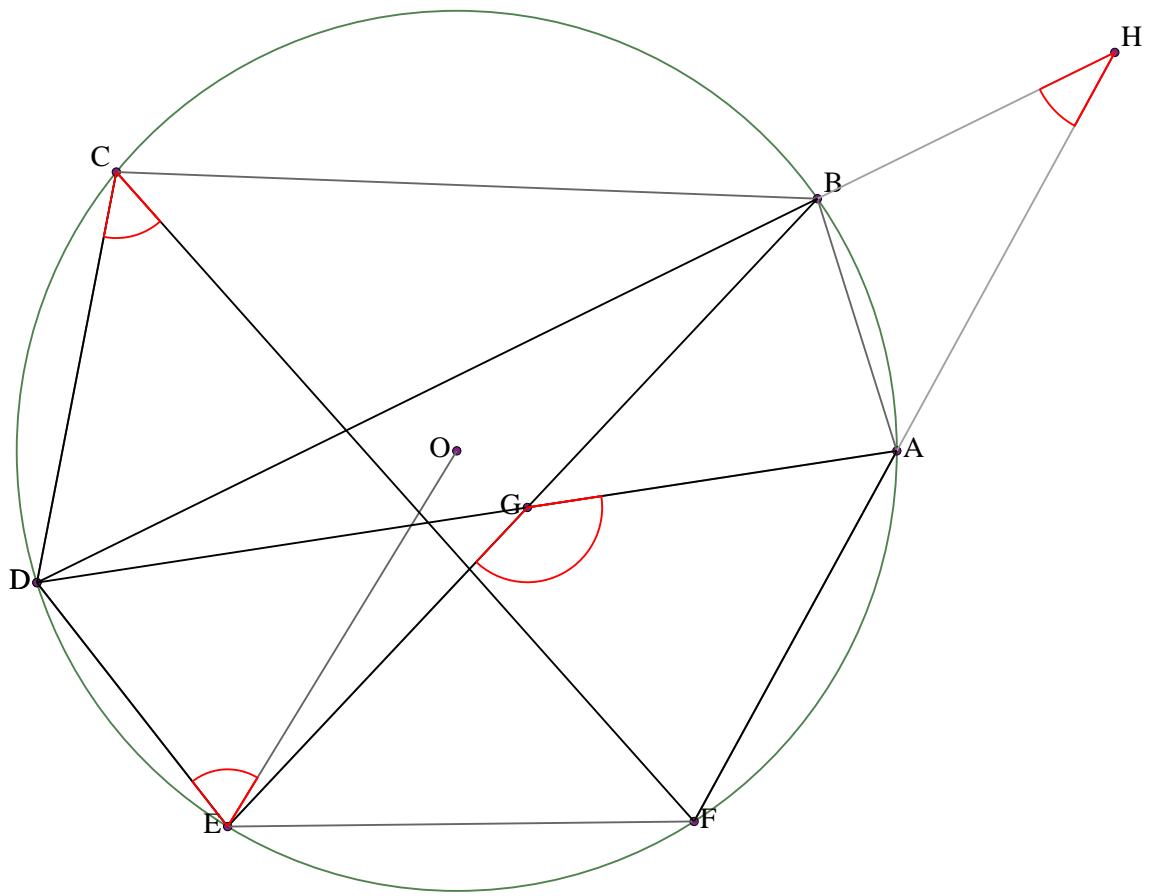


Let ABCDEF be a cyclic hexagon with center O. Let G be the intersection of FA and CD. Let H be the intersection of AE and DB.

Angle FGD = 62° . Angle EFO = 73° . Angle CEB = 28° .

Find angle EHD.

Example 111

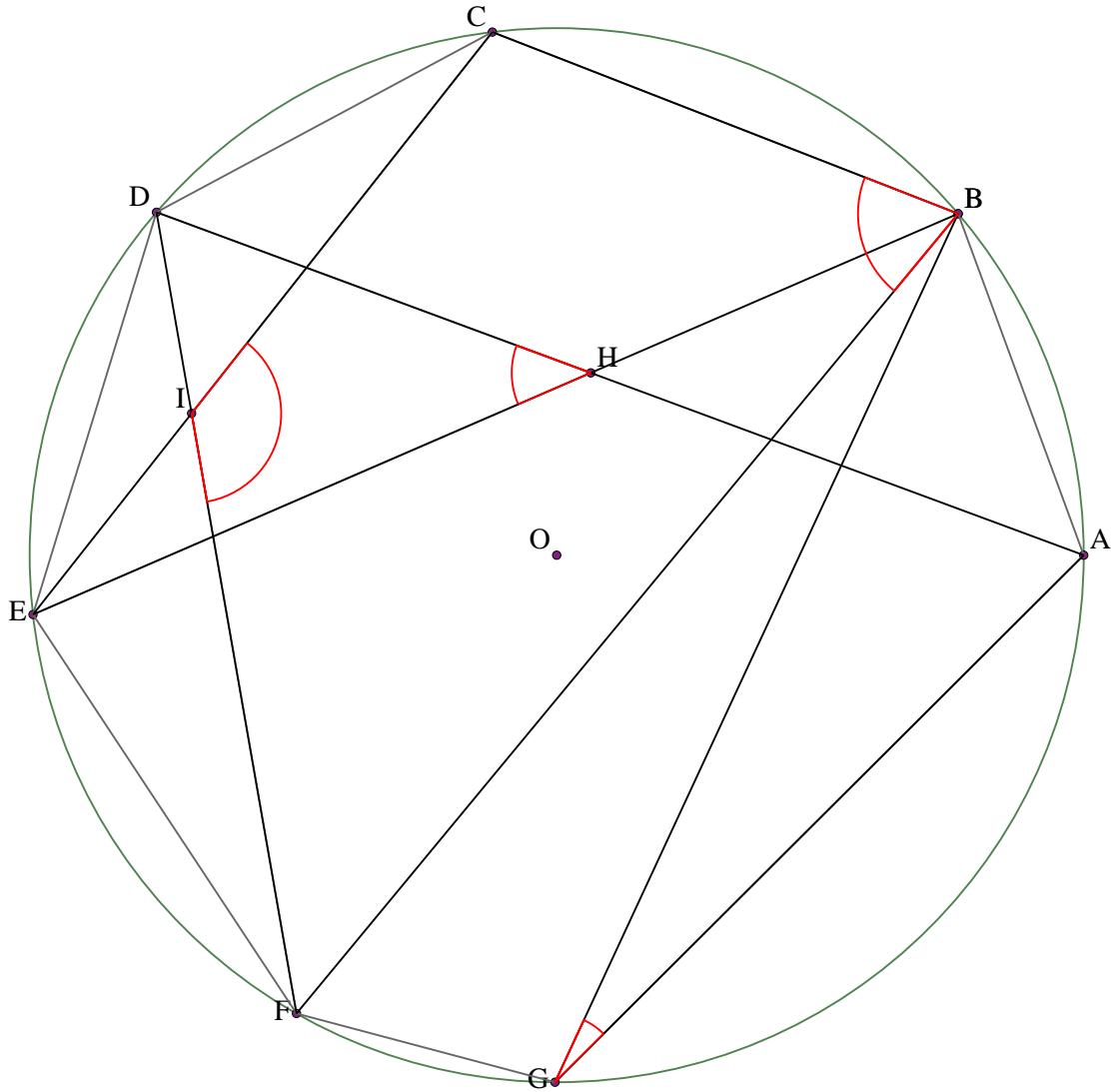


Let $ABCDEF$ be a cyclic hexagon with center O . Let G be the intersection of DA and BE . Let H be the intersection of AF and DB .

Angle $OED = 69^\circ$. Angle $AHB = 35^\circ$. Angle $FCD = 53^\circ$.

Find angle AGE .

Example 112

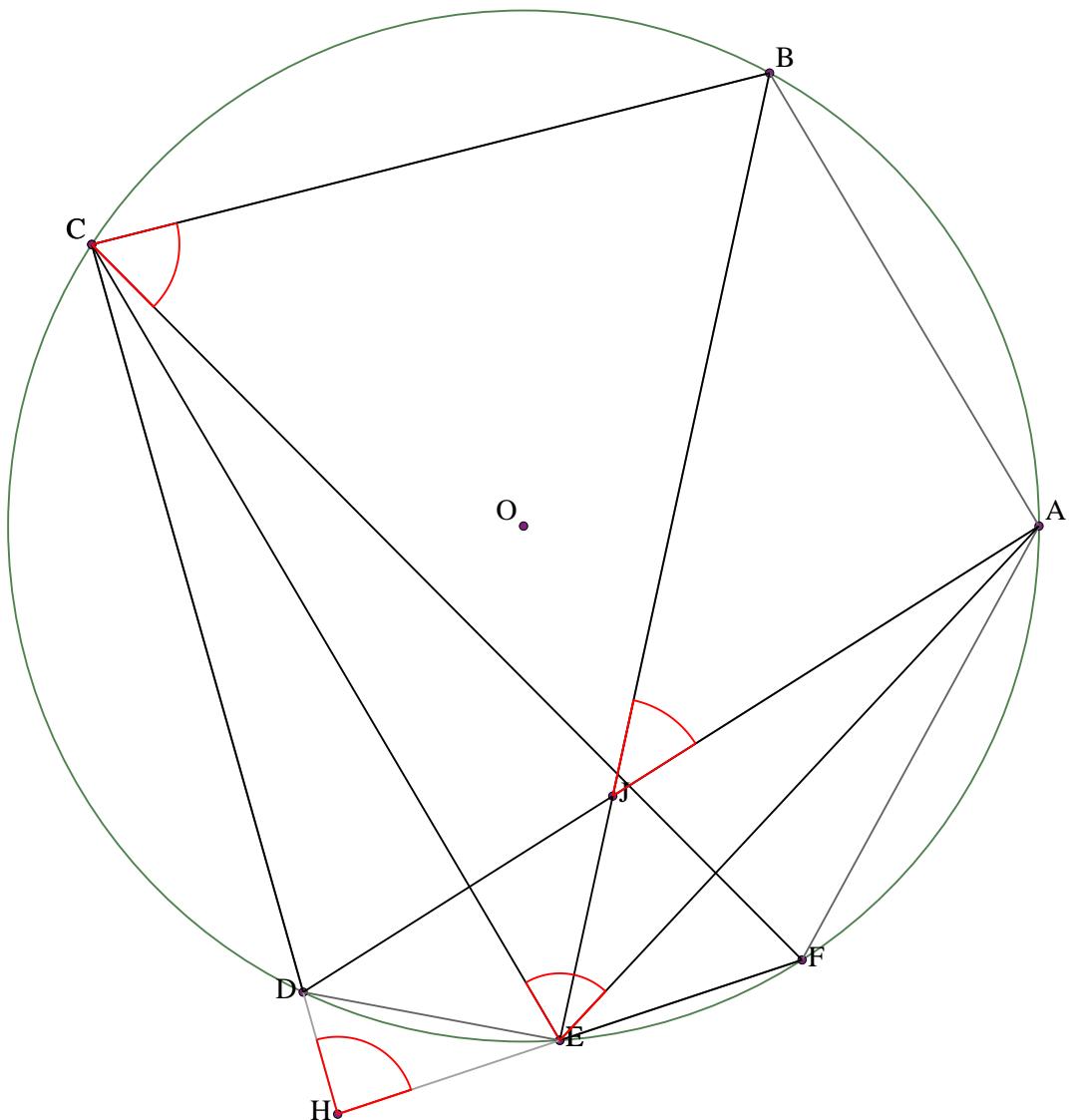


Let $ABCDEFG$ be a cyclic heptagon with center O . Let H be the intersection of AD and BE . Let I be the intersection of DF and EC .

Angle $DHE = 44^\circ$. Angle $BGA = 20^\circ$. Angle $FIC = 132^\circ$.

Find angle FBC .

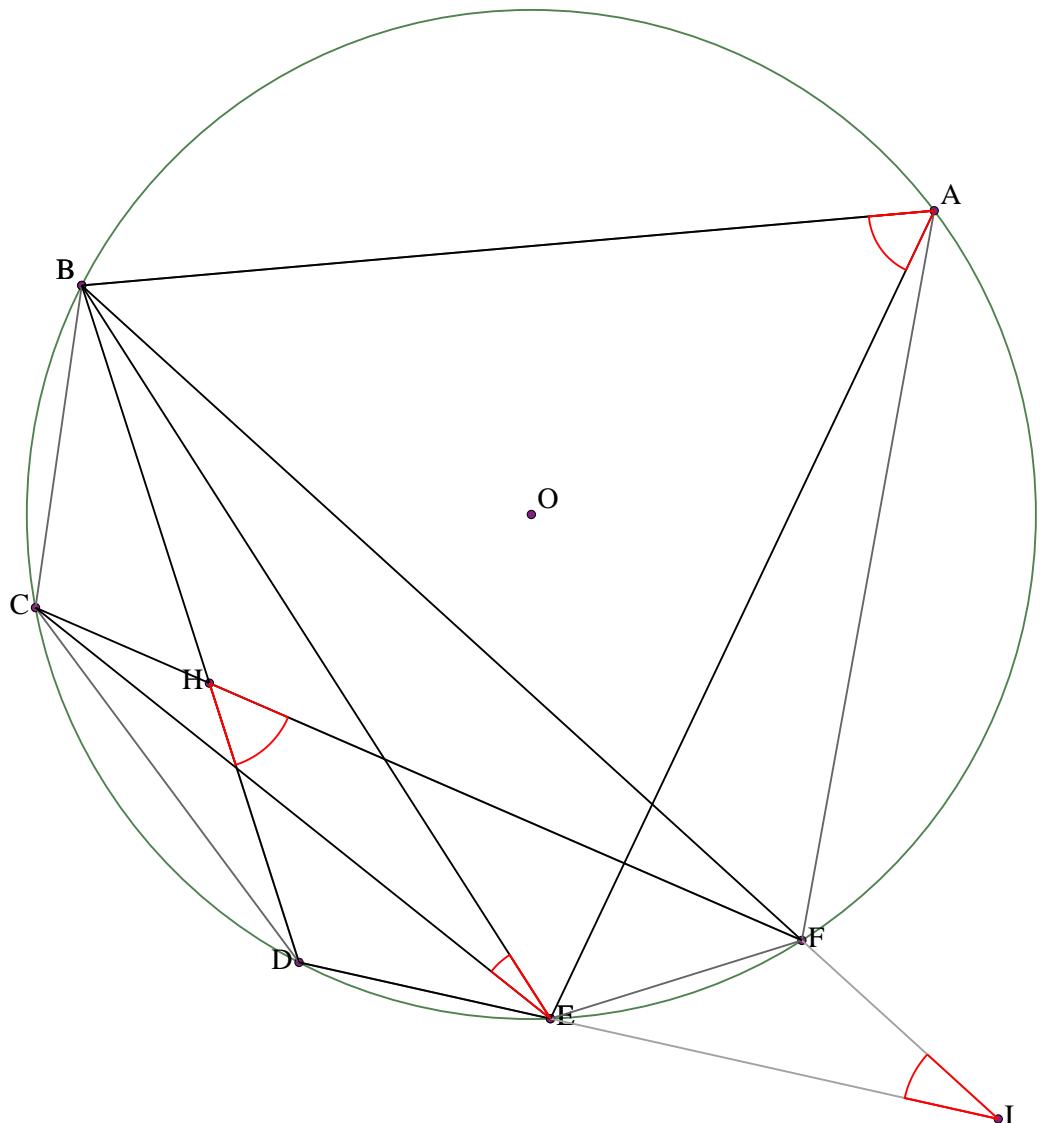
Example 113



Let ABCDEF be a cyclic hexagon with center O. Let H be the intersection of EF and CD. Let J be the intersection of EB and DA.

Prove that $DHE + AJB = AEC + BCF$

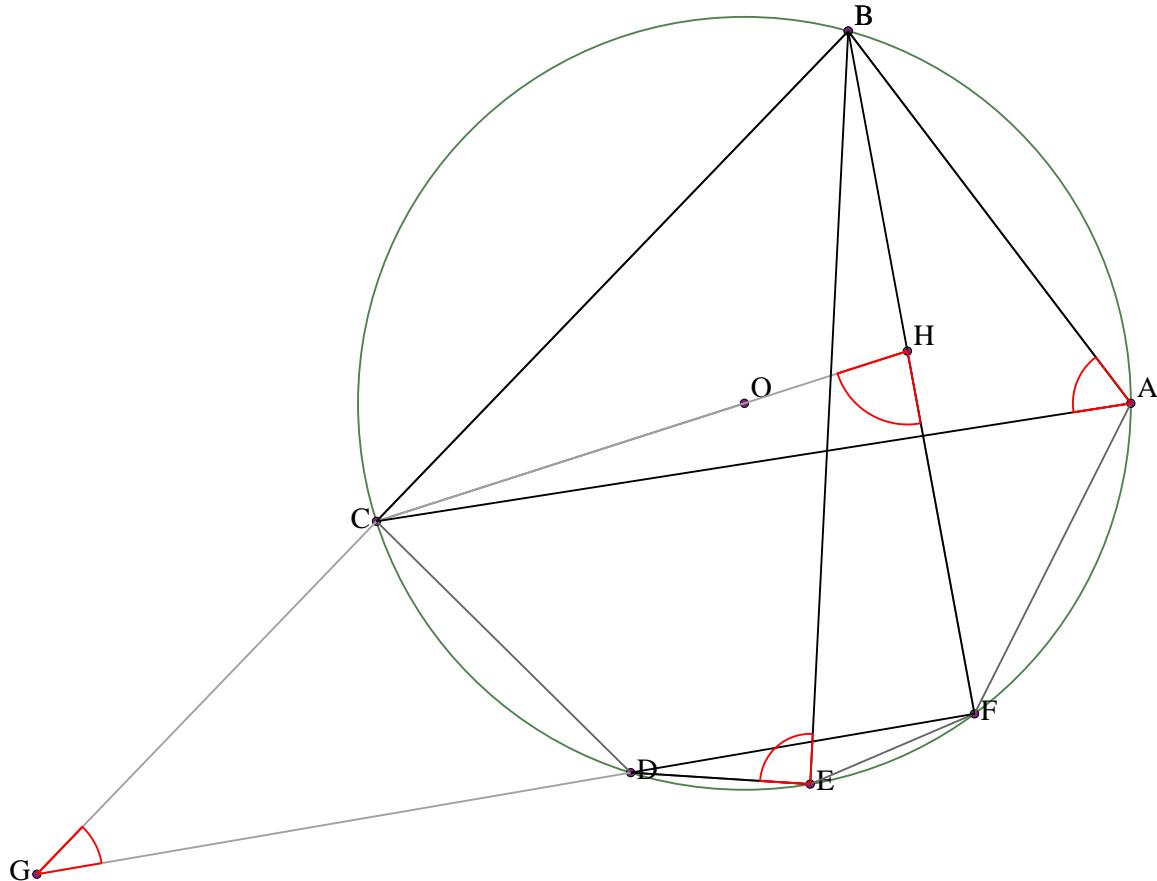
Example 114



Let $ABCDEF$ be a cyclic hexagon with center O . Let H be the intersection of BD and CF . Let I be the intersection of DE and FB .

Prove that $DHF + EIF = BAE + BEC$

Example 115

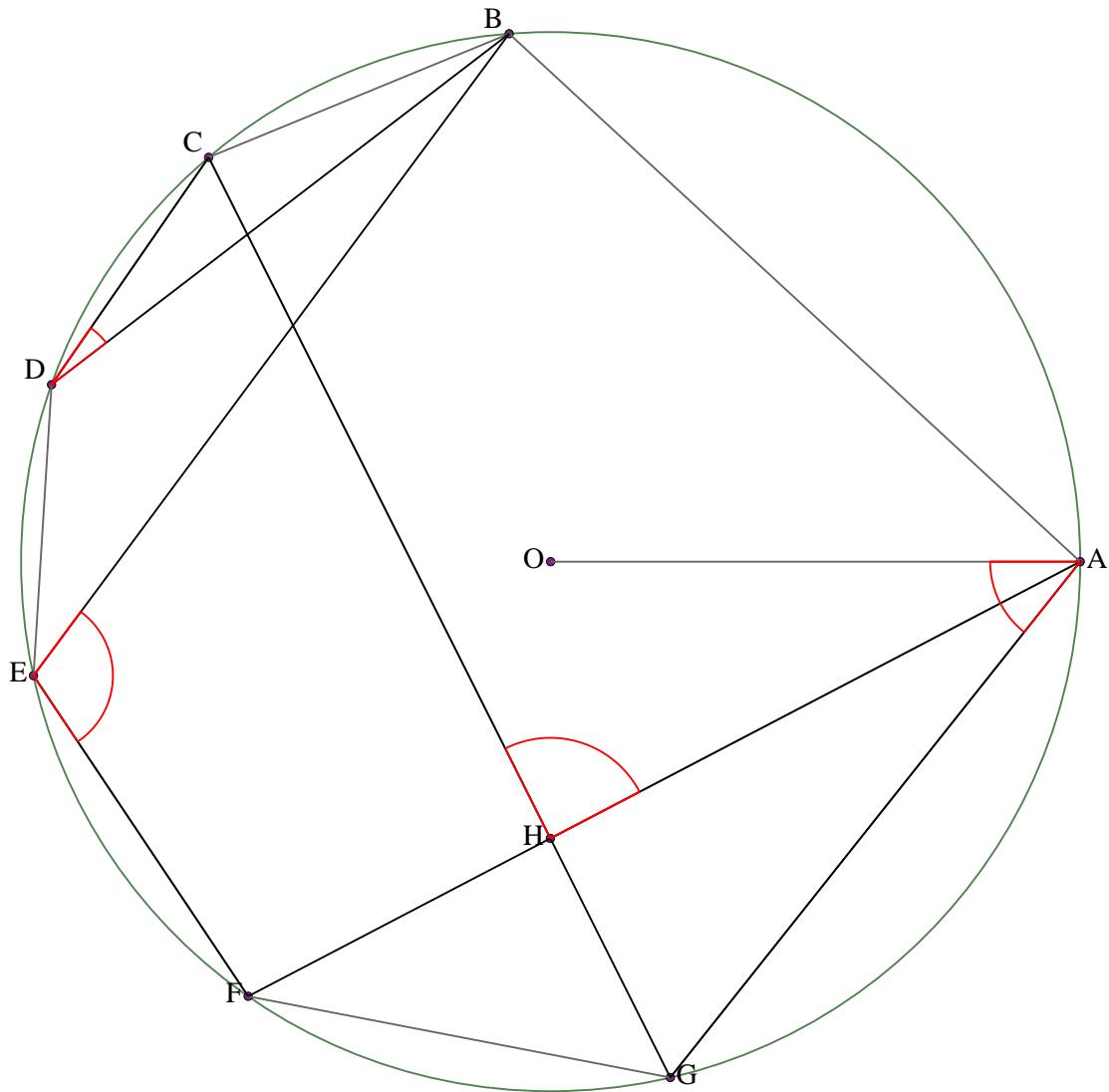


Let $ABCDEF$ be a cyclic hexagon with center O . Let G be the intersection of BC and FD . Let H be the intersection of OC and BF .

Angle $CAB = x$. Angle $CGD = y$. Angle $CHF = z$.

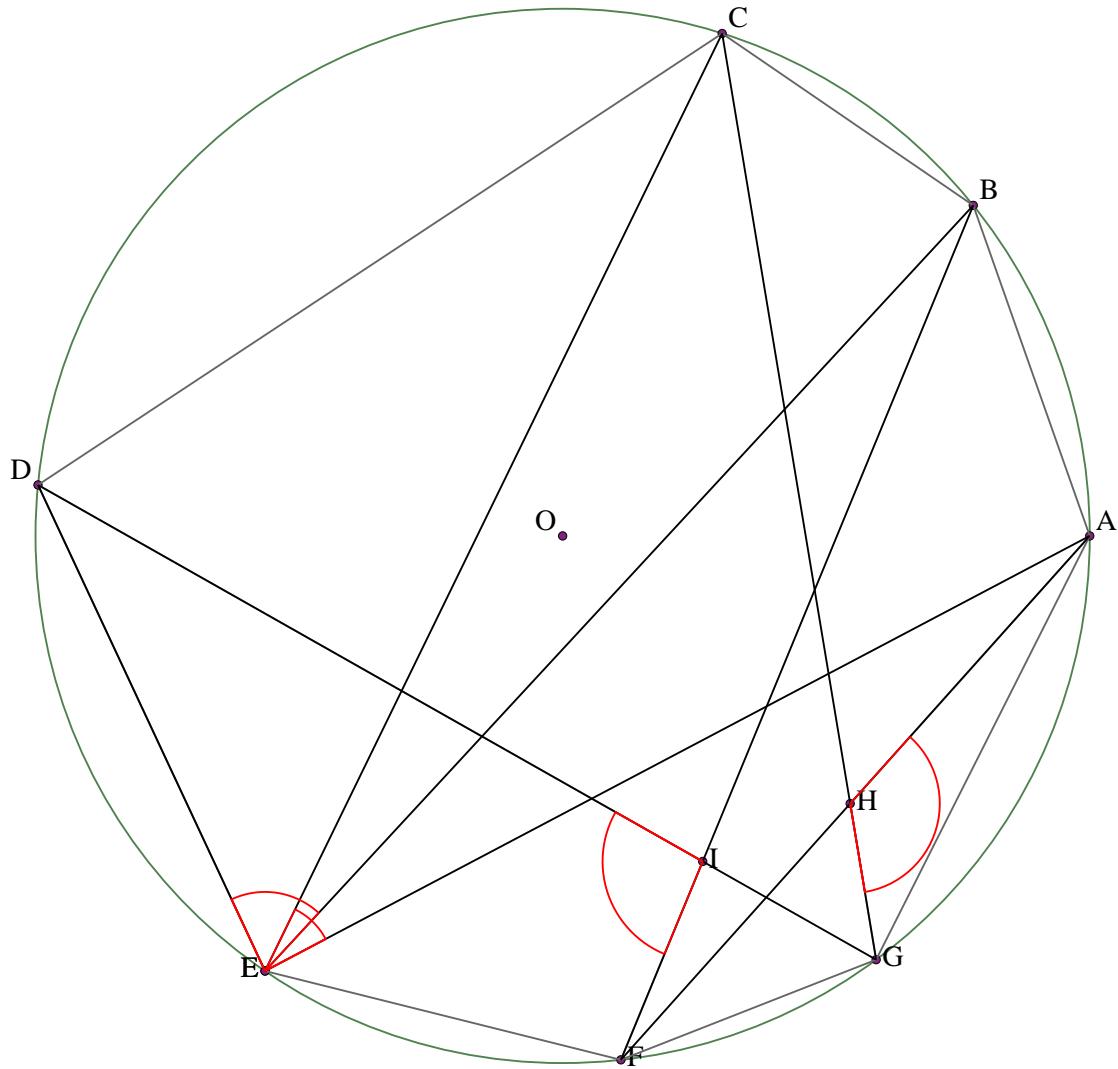
Find angle DEB .

Example 116



Let $ABCDEFG$ be a cyclic heptagon with center O . Let H be the intersection of FA and GC .
 Prove that $BDC + BEF + GAO = AHC + 90^\circ$

Example 117

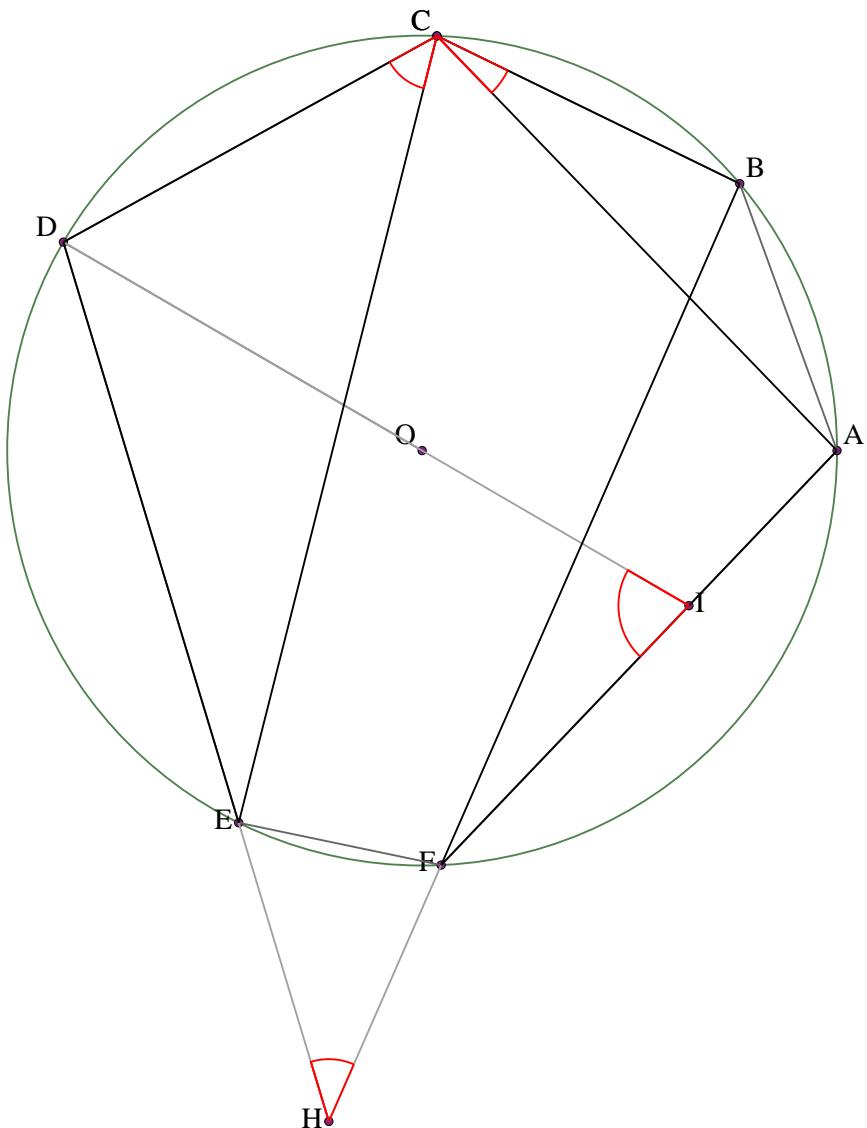


Let $ABCDEFG$ be a cyclic heptagon with center O . Let H be the intersection of CG and FA . Let I be the intersection of GD and BF .

Angle $DEB = 68^\circ$. Angle $DIF = 97^\circ$. Angle $GHA = 129^\circ$.

Find angle AEC .

Example 118

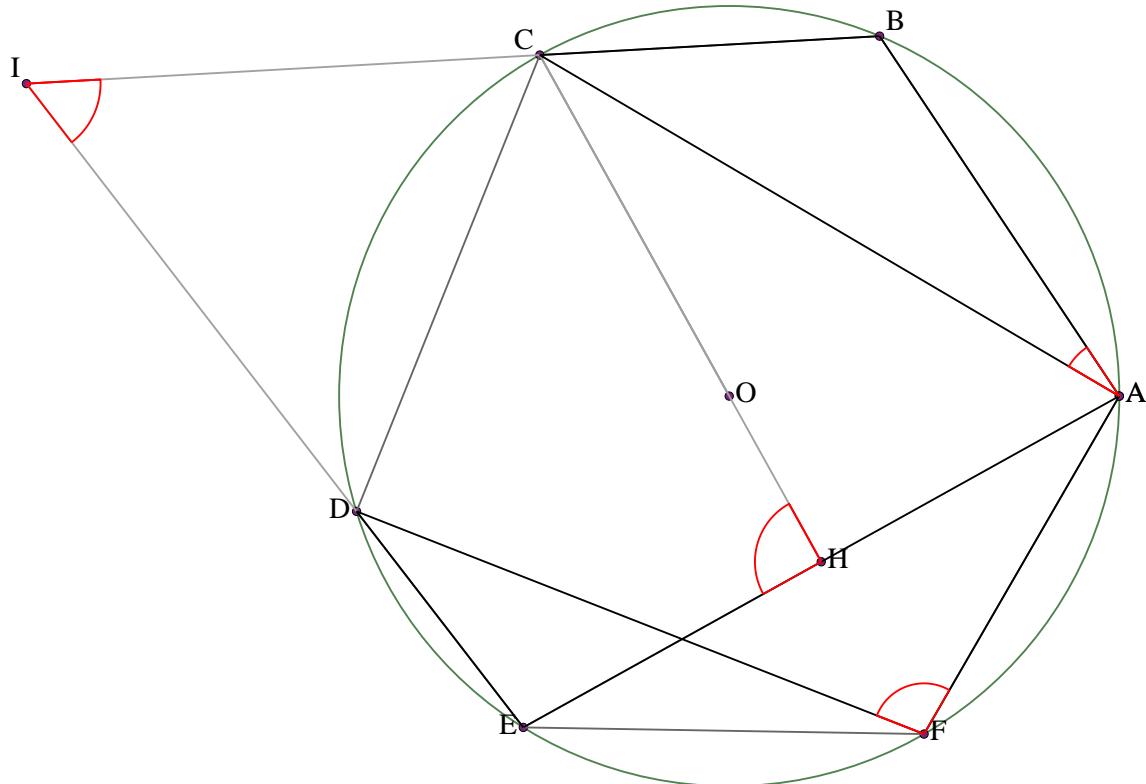


Let ABCDEF be a cyclic hexagon with center O. Let H be the intersection of ED and FB. Let I be the intersection of OD and AF.

Angle EHF = x. Angle DIF = y. Angle ACB = z.

Find angle ECD.

Example 119

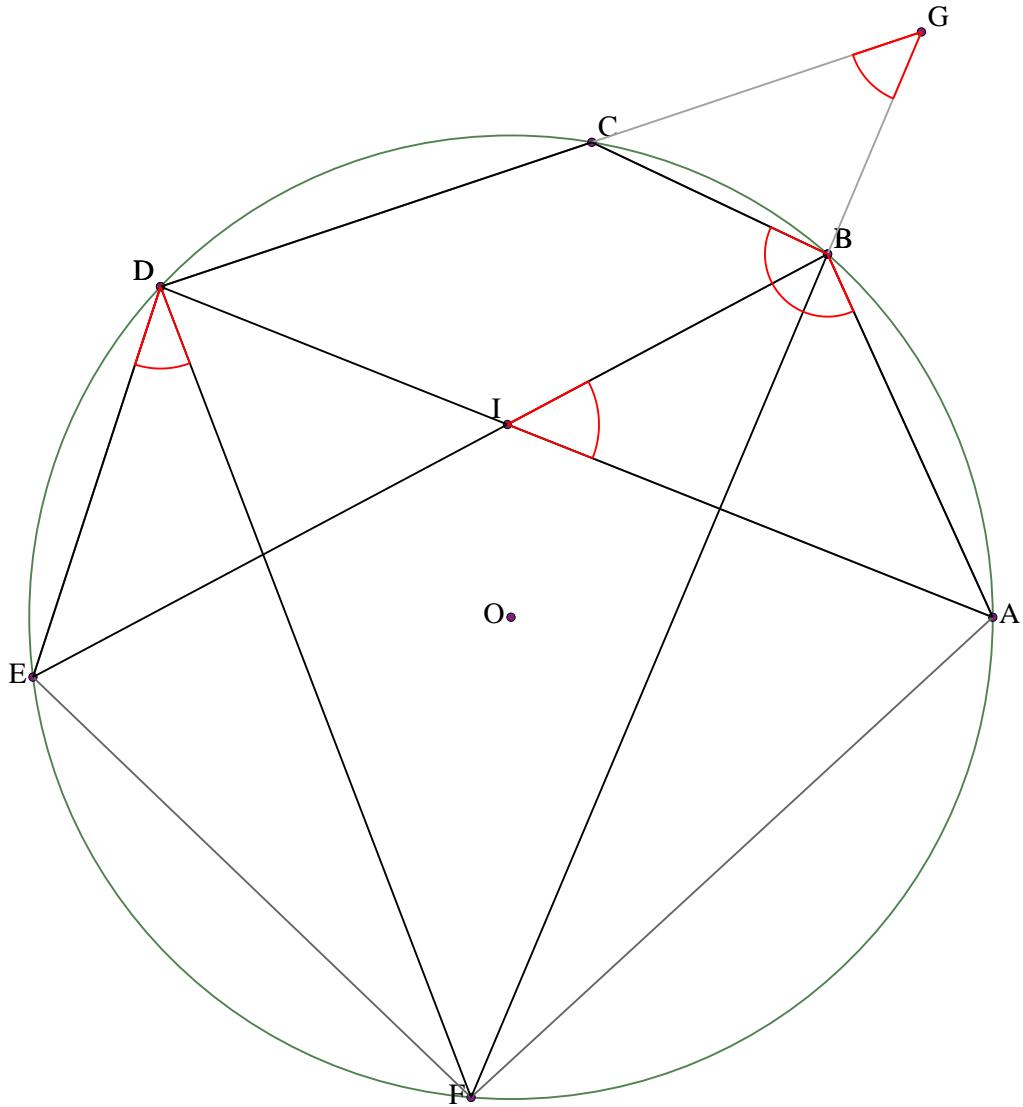


Let $ABCDEF$ be a cyclic hexagon with center O . Let H be the intersection of OC and AE . Let I be the intersection of CB and ED .

Angle $DFA = 99^\circ$. Angle $CAB = 26^\circ$. Angle $CID = 56^\circ$.

Find angle CHE .

Example 120

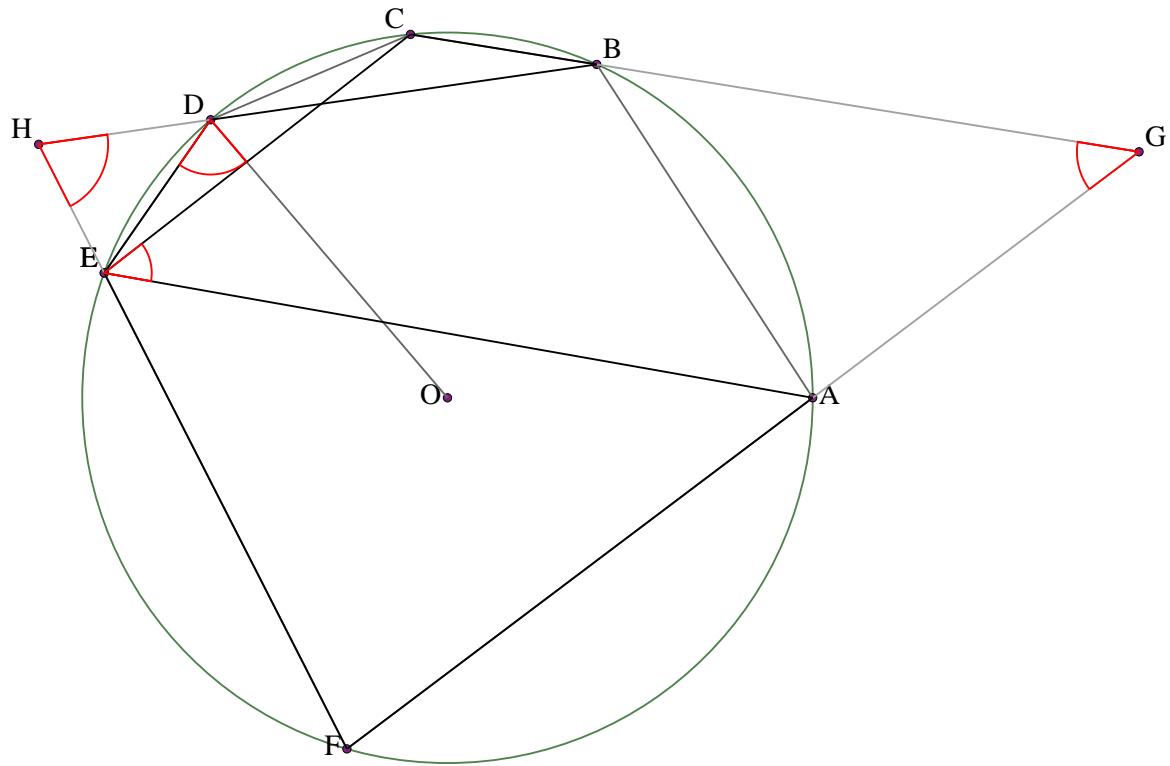


Let ABCDEF be a cyclic hexagon with center O. Let G be the intersection of CD and BF. Let I be the intersection of EB and DA.

Angle CGB = x. Angle ABC = y. Angle BIA = z.

Find angle EDF.

Example 121

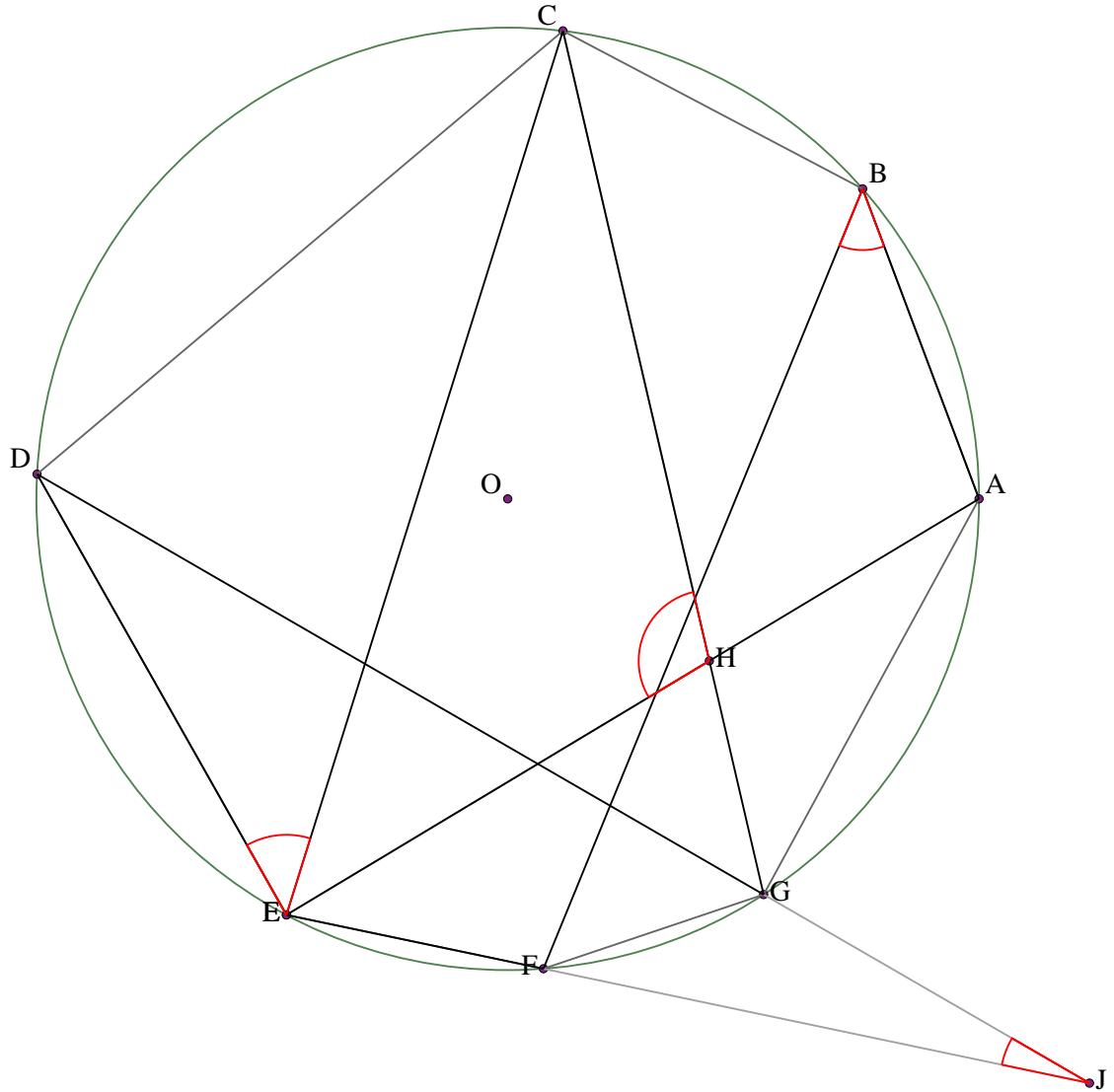


Let $ABCDEF$ be a cyclic hexagon with center O . Let G be the intersection of CB and FA . Let H be the intersection of BD and EF .

Angle $AEC = 48^\circ$. Angle $BGA = 46^\circ$. Angle $DHE = 71^\circ$.

Find angle ODE .

Example 122

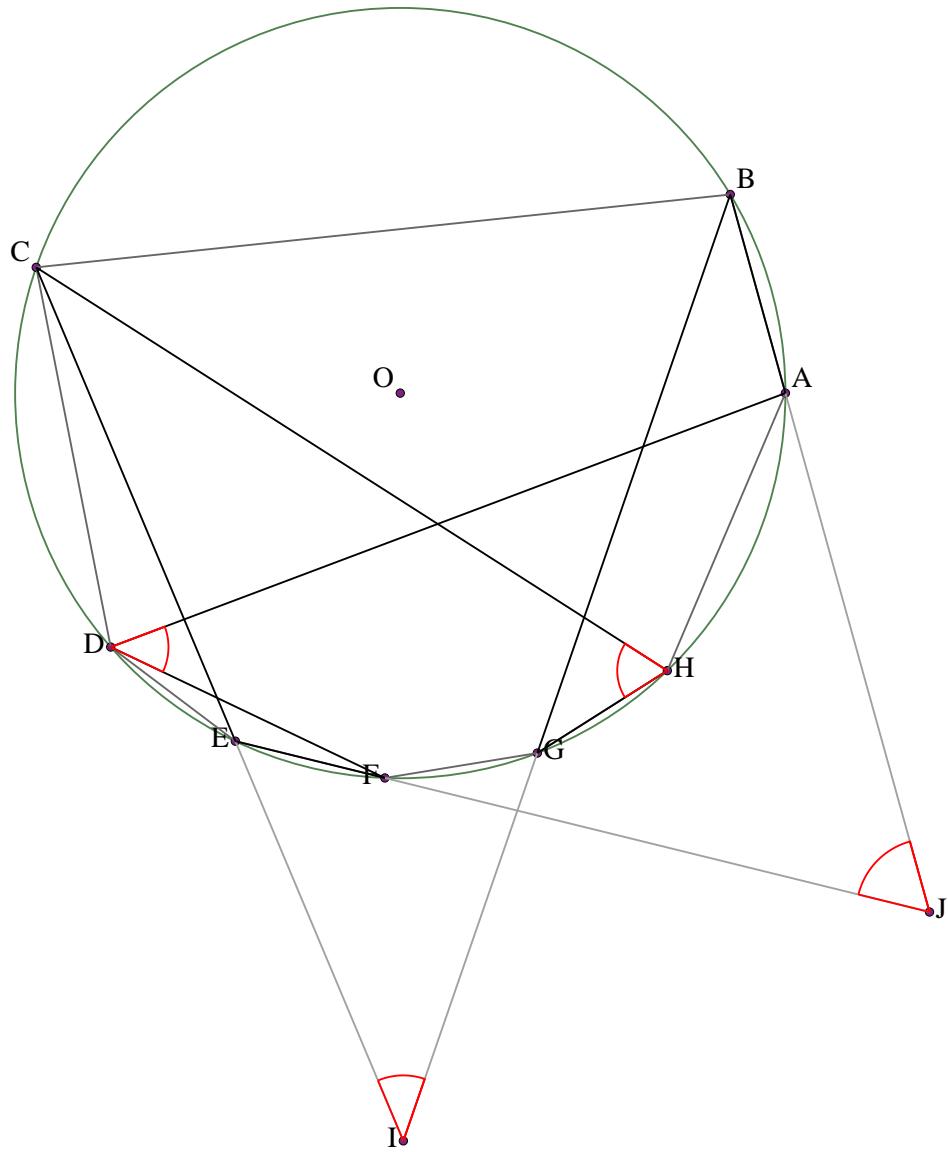


Let $ABCDEFG$ be a cyclic heptagon with center O . Let H be the intersection of AE and GC . Let J be the intersection of DG and EF .

Angle $EHC = 108^\circ$. Angle $DEC = 47^\circ$. Angle $GJF = 18^\circ$.

Find angle FBA .

Example 123

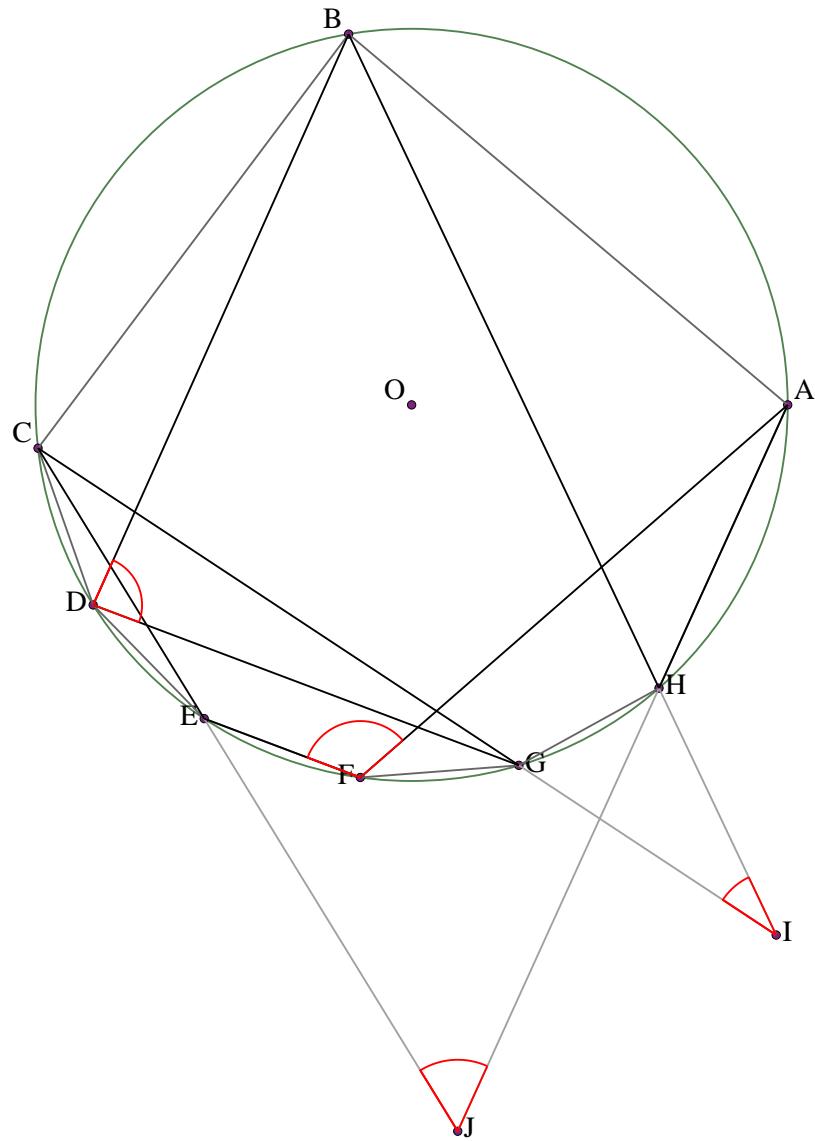


Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of GB and EC . Let J be the intersection of BA and FE .

Angle $CHG = 65^\circ$. Angle $GIE = 42^\circ$. Angle $ADF = 46^\circ$.

Find angle AJF .

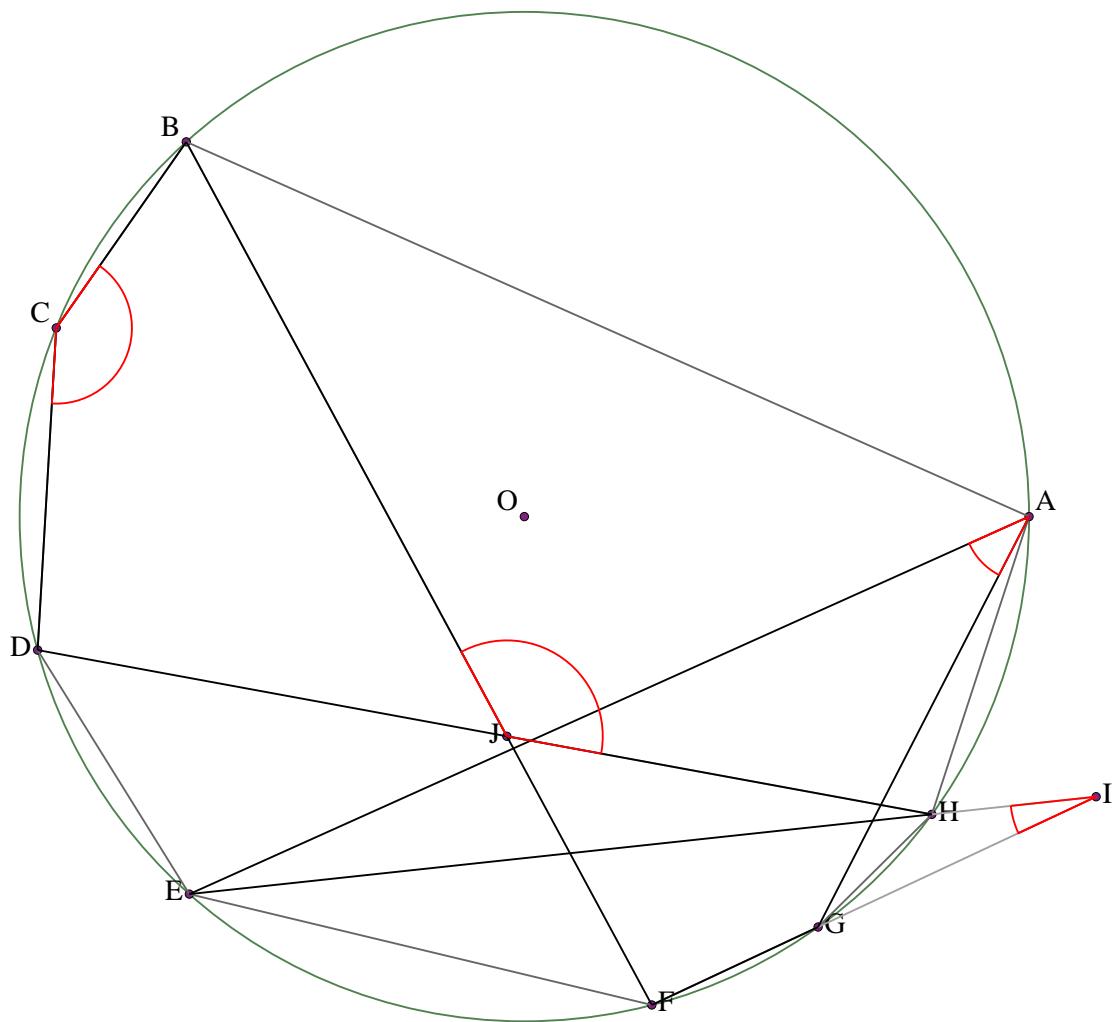
Example 124



Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of GC and HB . Let J be the intersection of CE and AH .

Prove that $BDG + AFE + GIH = EJH + 180$

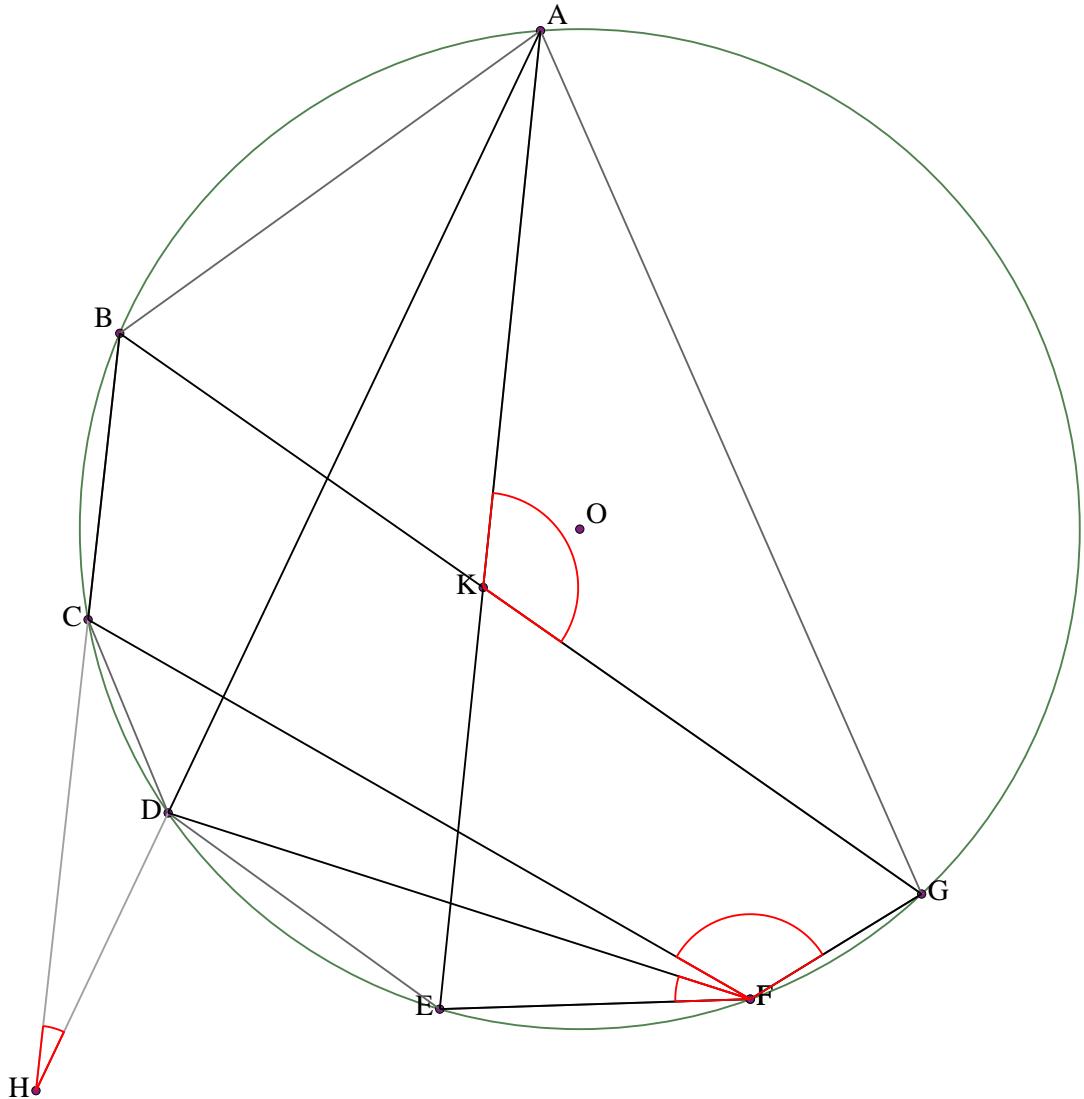
Example 125



Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of GF and HE . Let J be the intersection of FB and DH .

Prove that $BCD + GIH = EAG + BJH$

Example 126

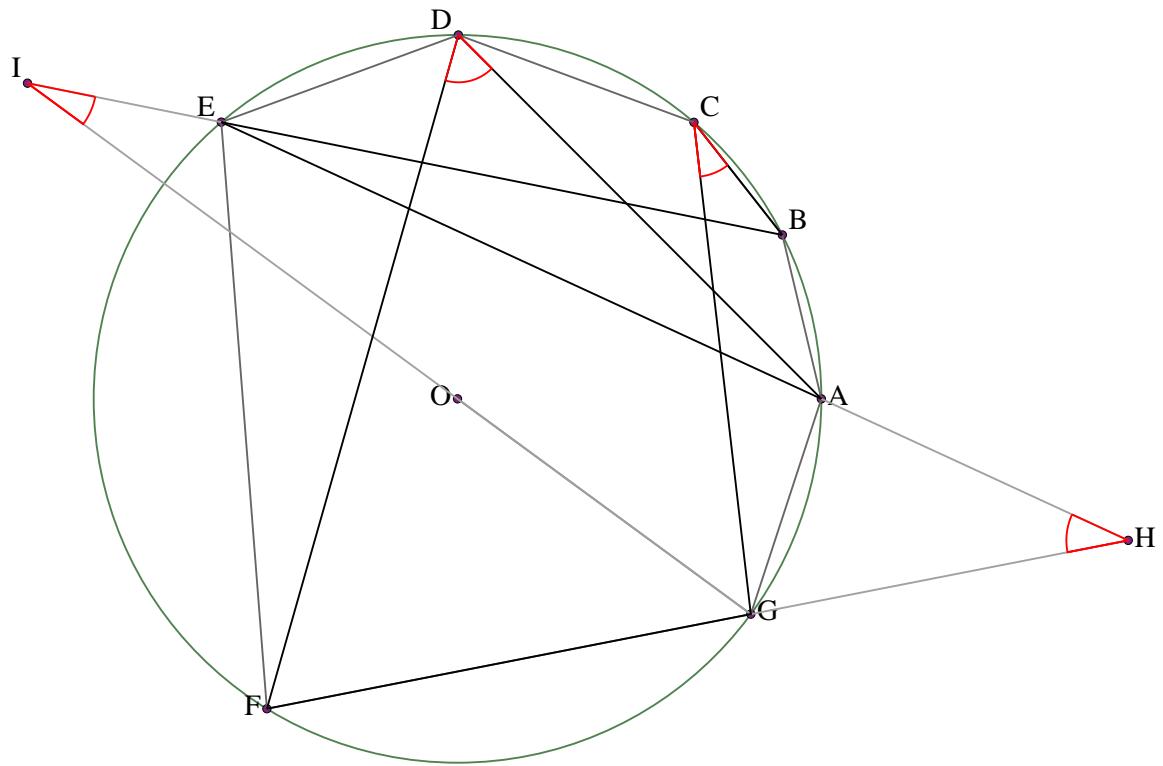


Let $ABCDEFG$ be a cyclic heptagon with center O . Let H be the intersection of AD and CB . Let K be the intersection of BG and EA .

Angle $DHC = x$. Angle $GKA = y$. Angle $CFG = z$.

Find angle DFE .

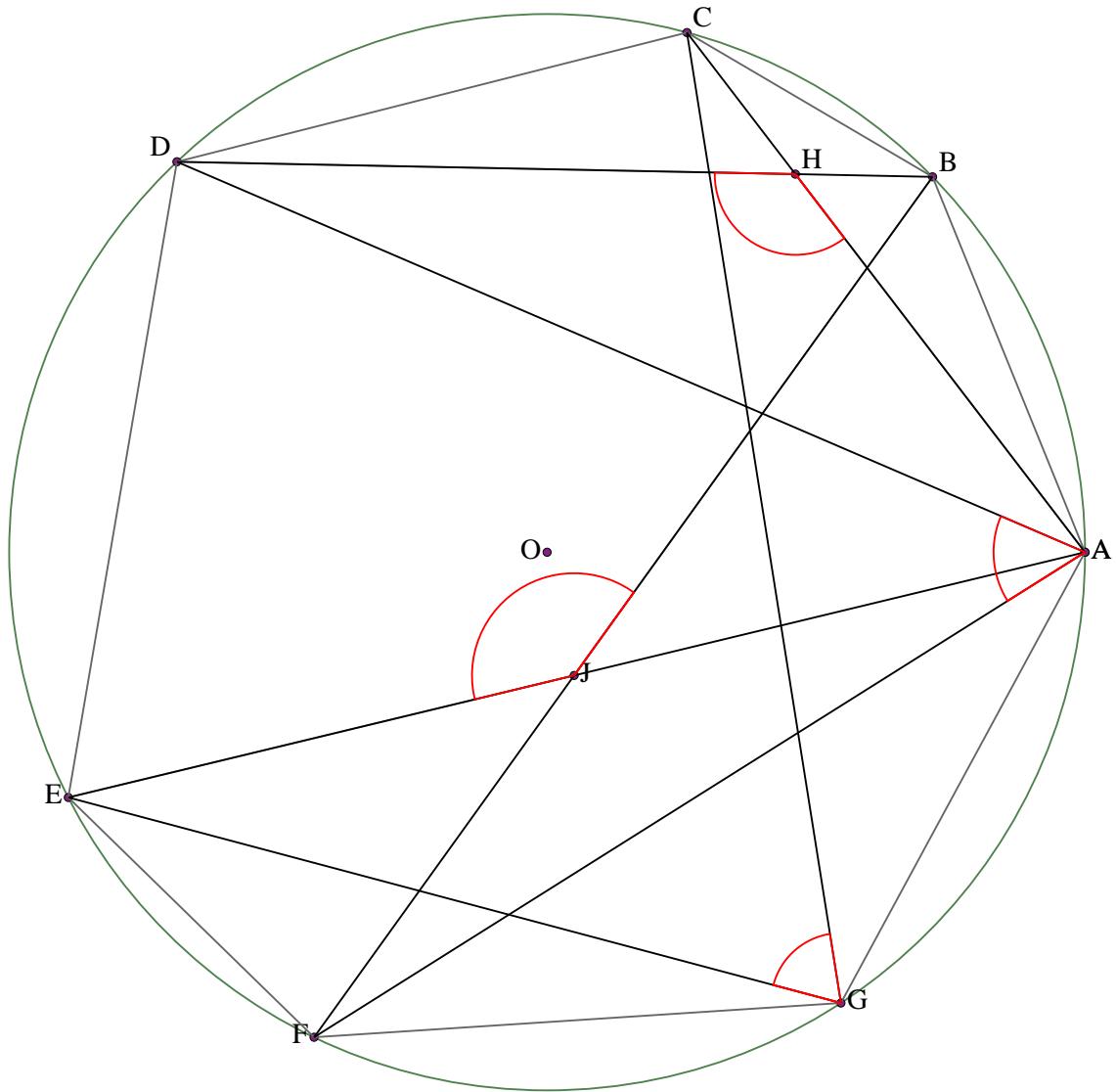
Example 127



Let $ABCDEFG$ be a cyclic heptagon with center O . Let H be the intersection of FG and EA . Let I be the intersection of OG and BE .

Prove that $ADF + AHG + EIG = BCG + 90^\circ$

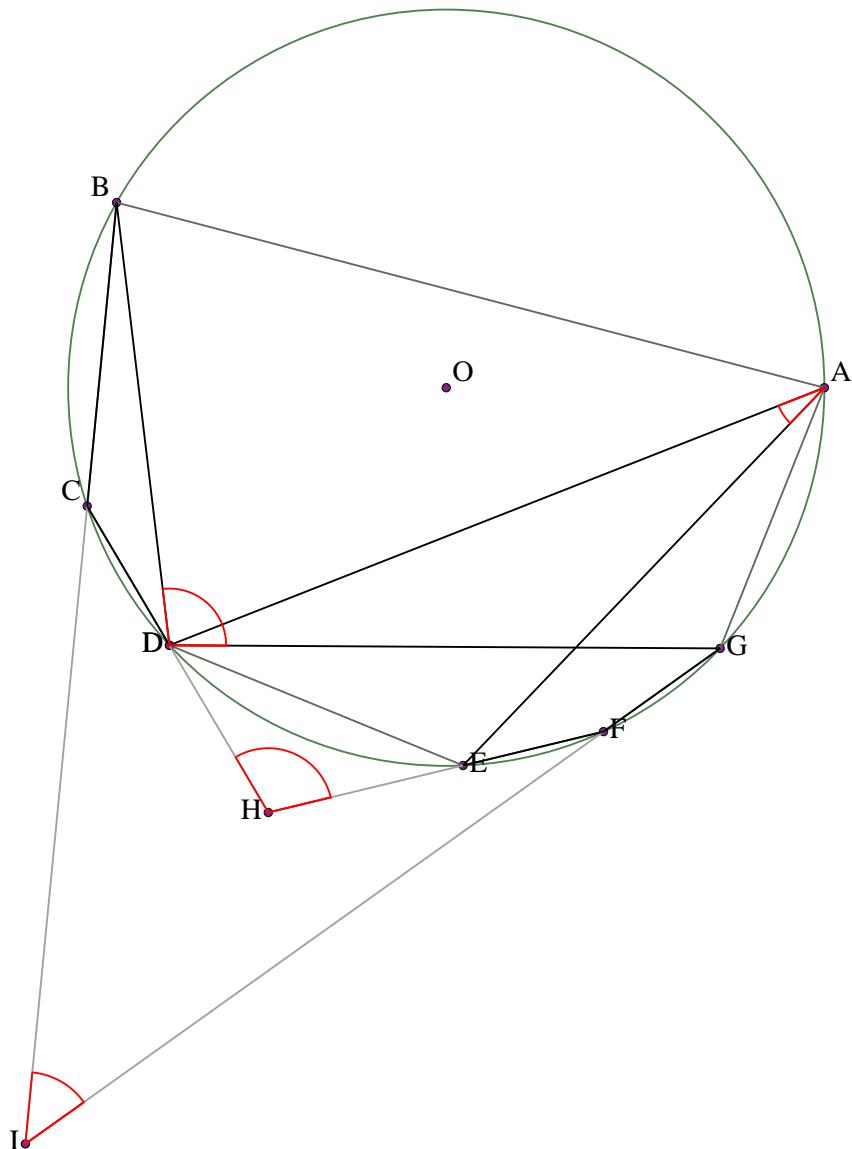
Example 128



Let $ABCDEFG$ be a cyclic heptagon with center O . Let H be the intersection of CA and BD . Let J be the intersection of FB and AE .

Prove that $CGE + AHD = DAF + BJE$

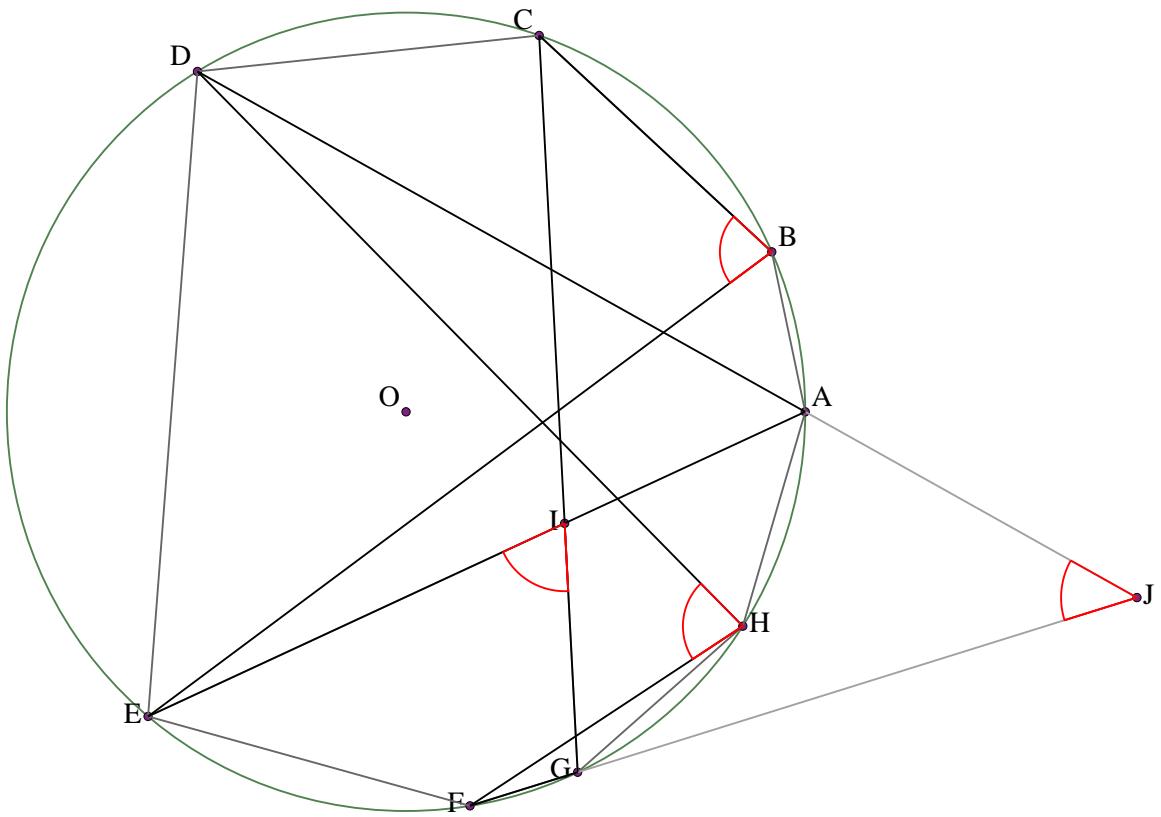
Example 129



Let $ABCDEFG$ be a cyclic heptagon with center O . Let H be the intersection of EF and CD . Let I be the intersection of FG and BC .

Prove that $DAE + BDG + DHE = CIF + 180$

Example 130

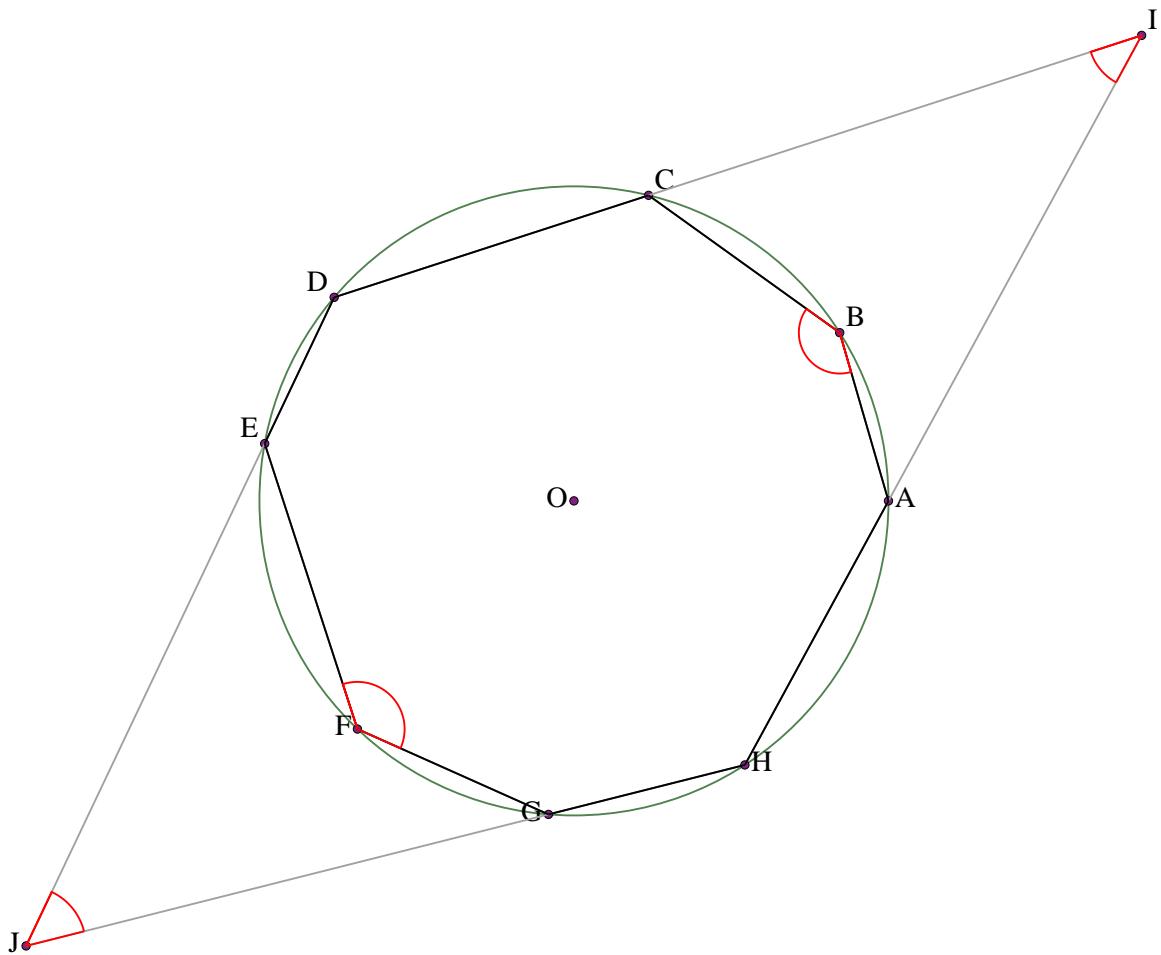


Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of CG and AE . Let J be the intersection of GF and DA .

Angle $GJA = x$. Angle $EBC = y$. Angle $GIE = z$.

Find angle FHD .

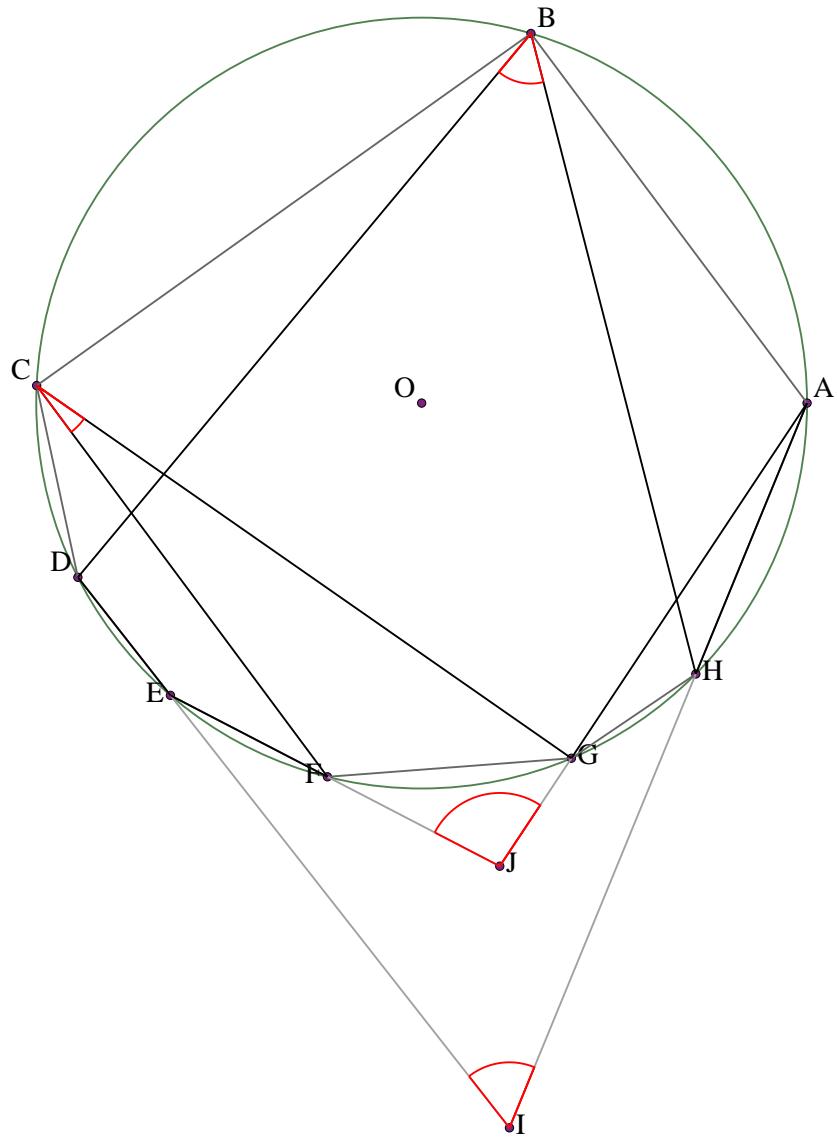
Example 131



Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of CD and HA . Let J be the intersection of DE and GH .

Prove that $ABC+EFG = AIC+EJG+180$

Example 132

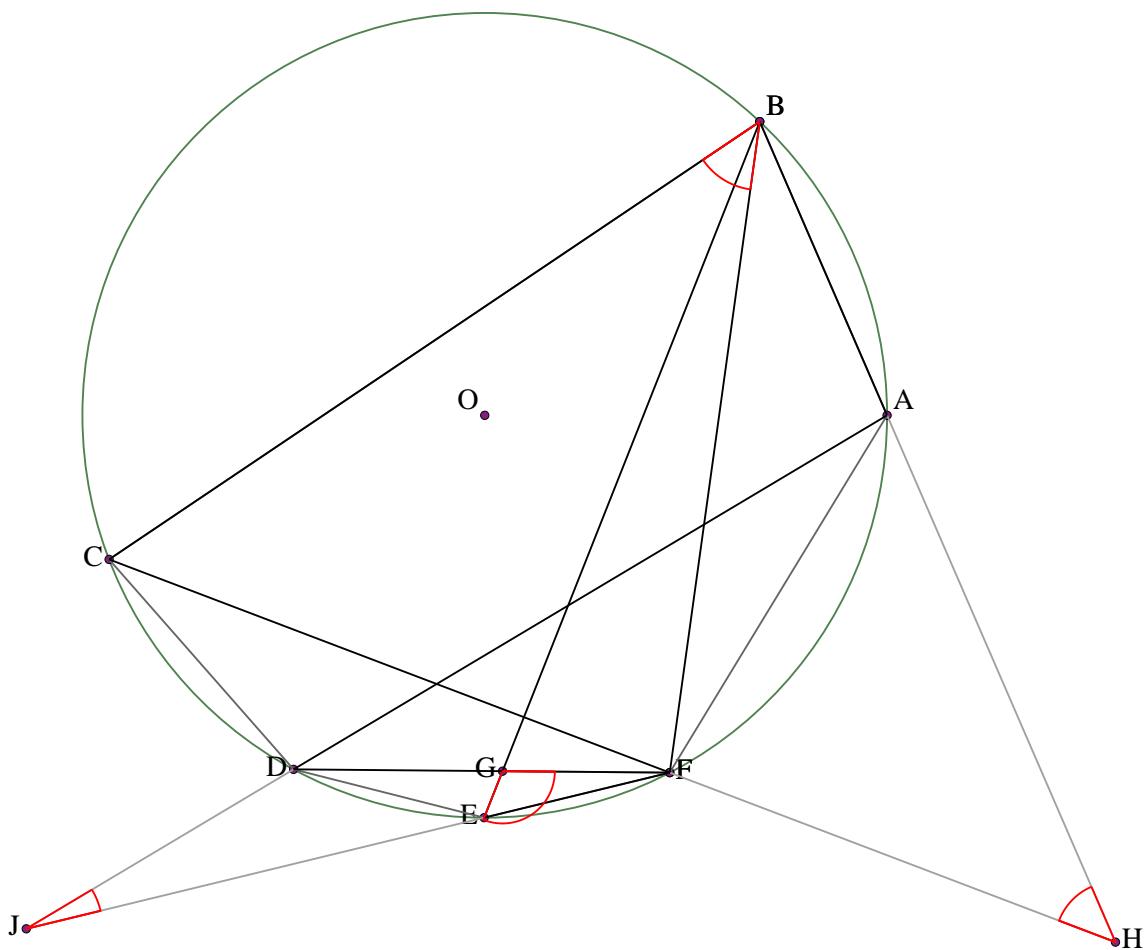


Let ABCDEFGH be a cyclic octagon with center O. Let I be the intersection of HA and ED. Let J be the intersection of AG and FE.

Angle DBH = x. Angle HIE = y. Angle GCF = z.

Find angle GJF.

Example 133

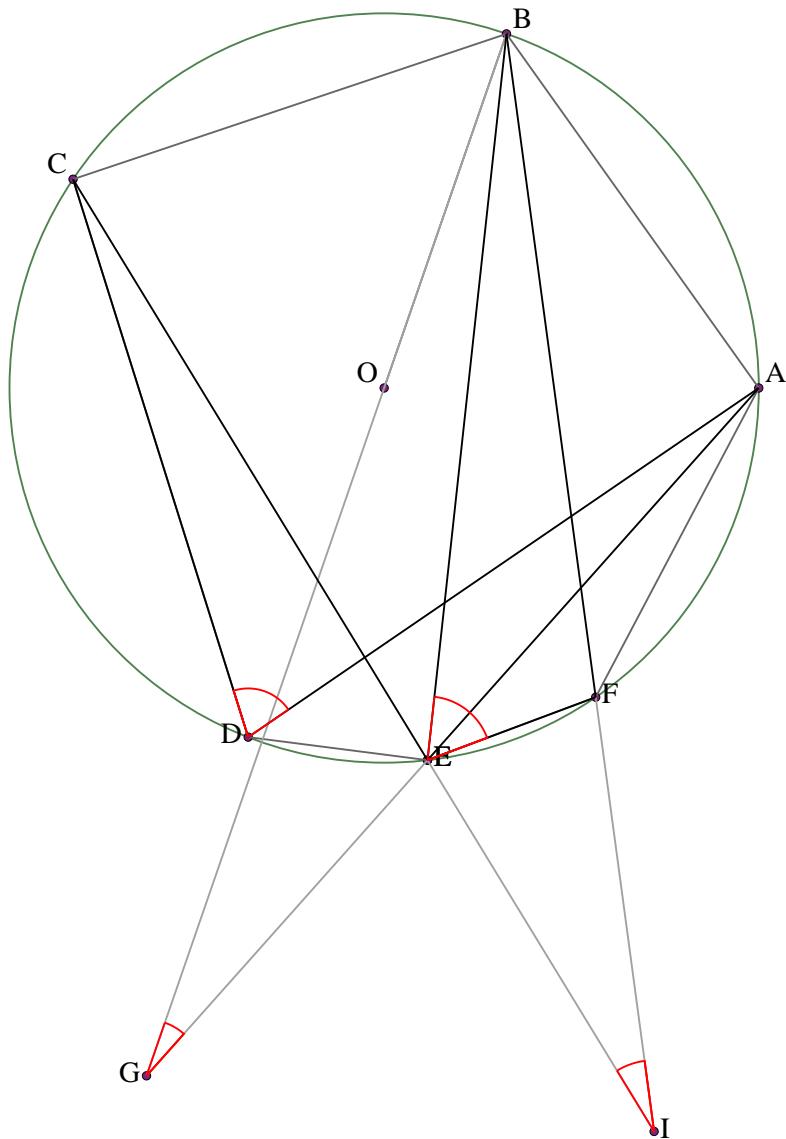


Let $ABCDEF$ be a cyclic hexagon with center O . Let G be the intersection of DF and BE . Let H be the intersection of FC and BA . Let J be the intersection of EF and AD .

Angle $FGE = x$. Angle $CBF = y$. Angle $EJD = z$.

Find angle FHA .

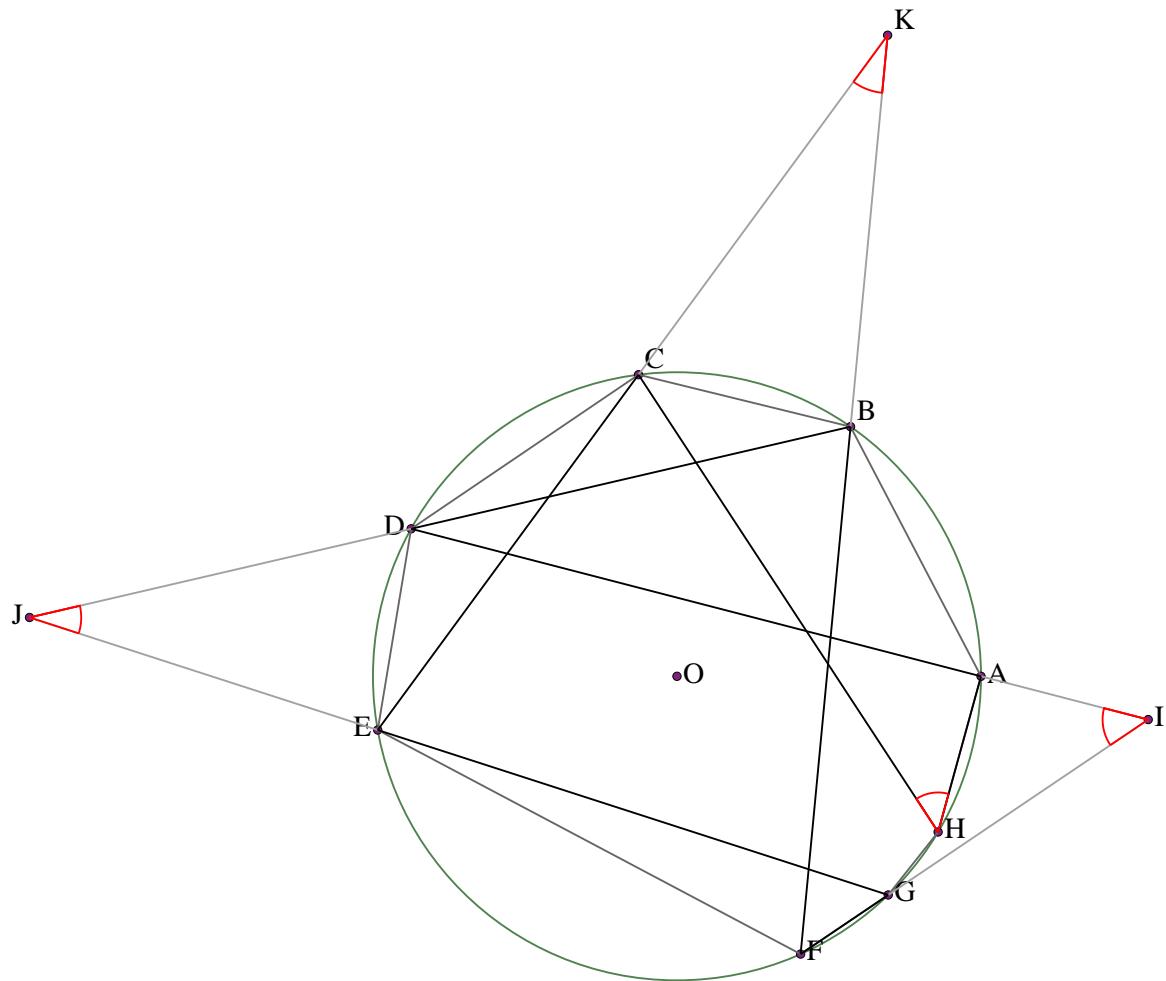
Example 134



Let ABCDEF be a cyclic hexagon with center O. Let G be the intersection of AE and BO. Let I be the intersection of FB and EC.

Prove that $ADC + BEF = BGE + EIF + 90^\circ$

Example 135

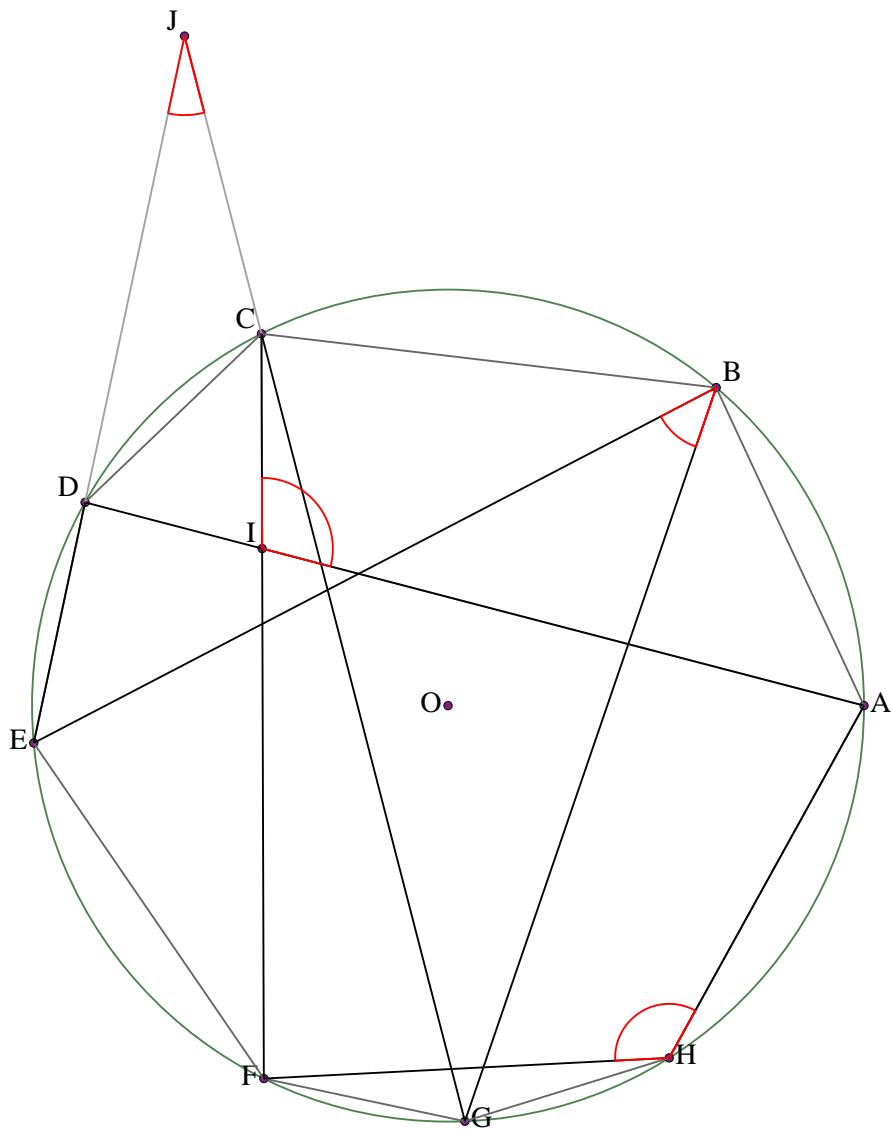


Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of AD and FG . Let J be the intersection of DB and GE . Let K be the intersection of BF and EC .

Angle $CHA = x$. Angle $BKC = y$. Angle $DJE = z$.

Find angle AIG .

Example 136

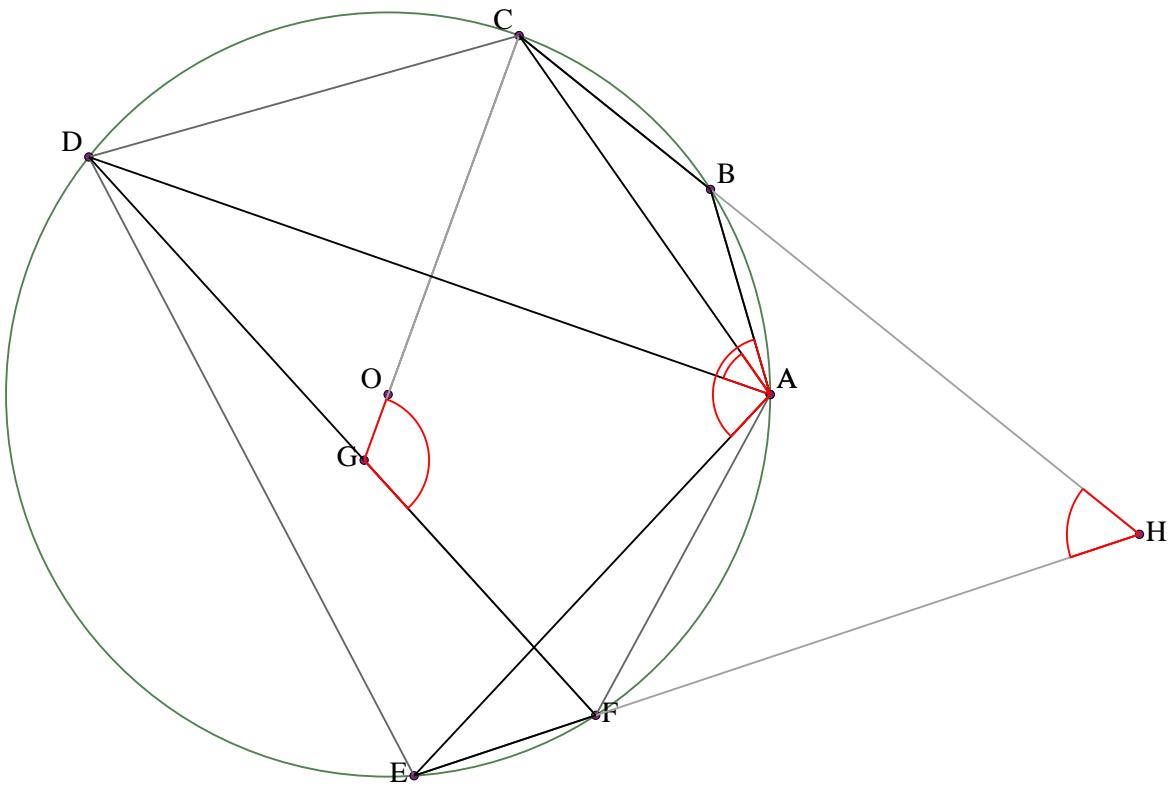


Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of FC and DA . Let J be the intersection of CG and ED .

Angle AHF = x. Angle CJD = y. Angle CIA = z.

Find angle GBE.

Example 137

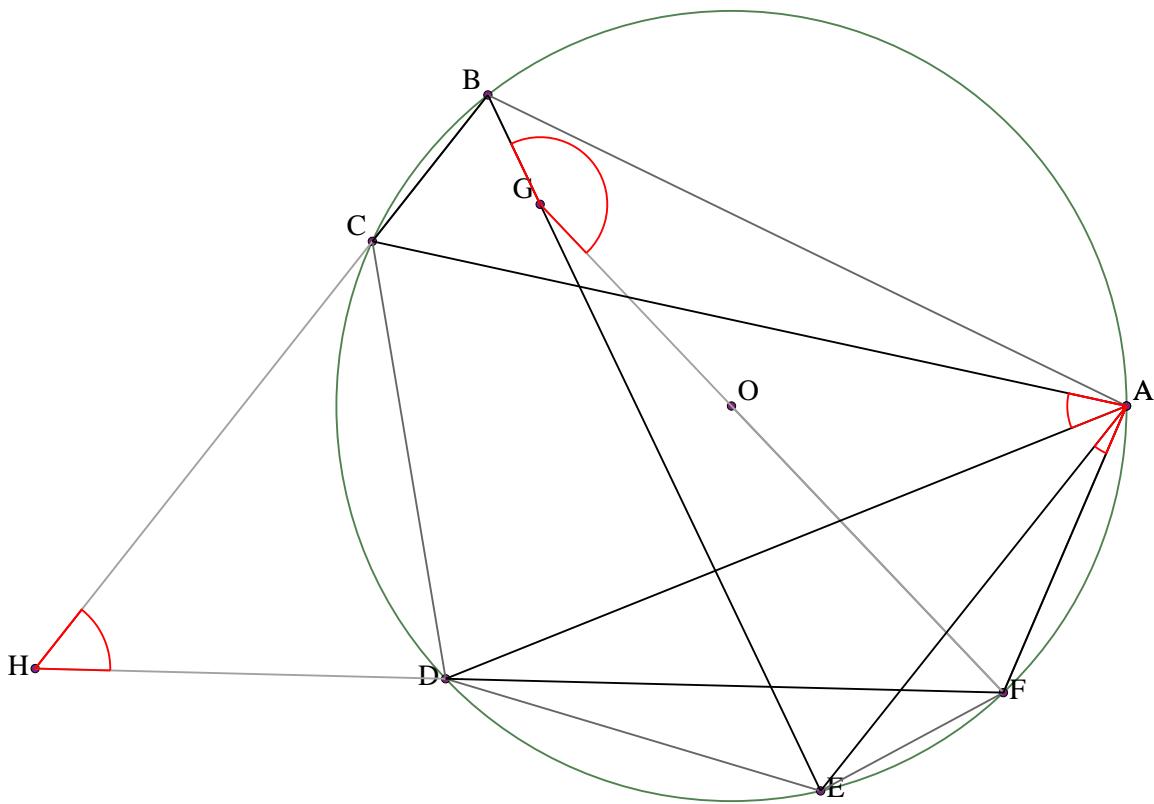


Let ABCDEF be a cyclic hexagon with center O. Let G be the intersection of DF and CO. Let H be the intersection of FE and BC.

Angle EAB = x. Angle CAD = y. Angle FGC = z.

Find angle FHB.

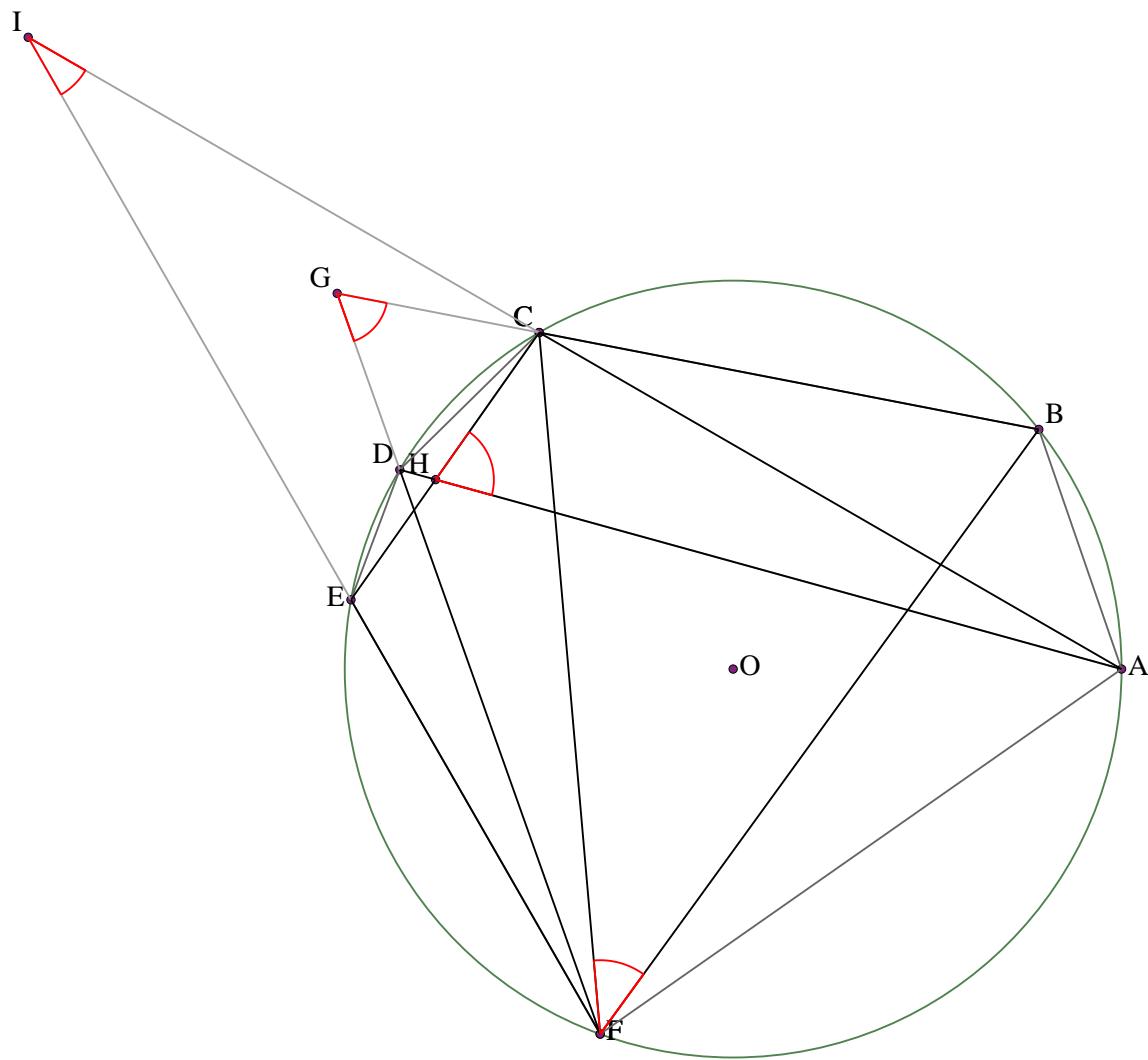
Example 138



Let $ABCDEF$ be a cyclic hexagon with center O . Let G be the intersection of EB and FO . Let H be the intersection of BC and DF .

Prove that $EAF + BGF = CAD + CHD + 90^\circ$

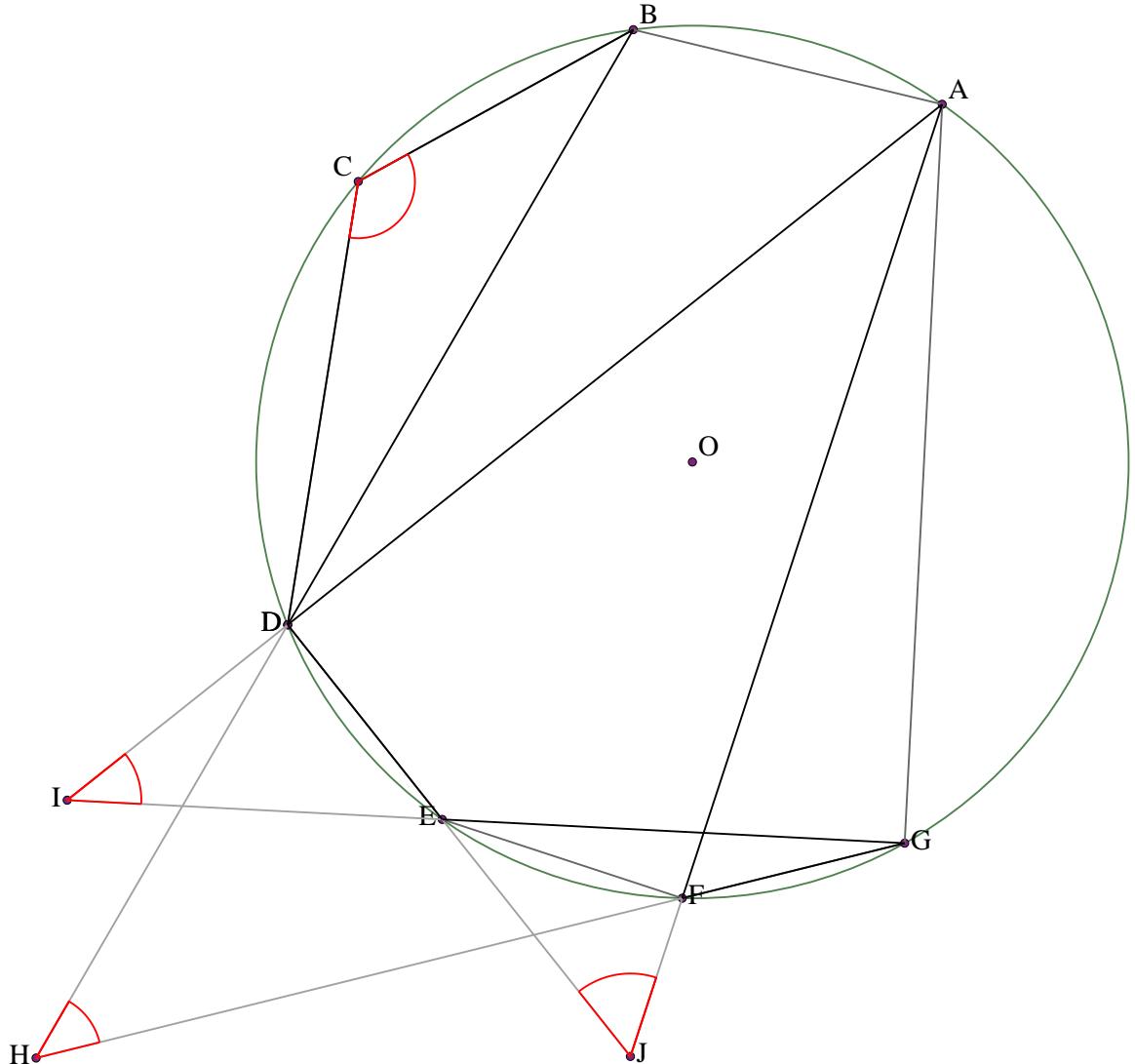
Example 139



Let $ABCDEF$ be a cyclic hexagon with center O . Let G be the intersection of FD and CB . Let H be the intersection of DA and EC . Let I be the intersection of AC and FE .

Prove that $AHC + CIE = CGD + BFC$

Example 140

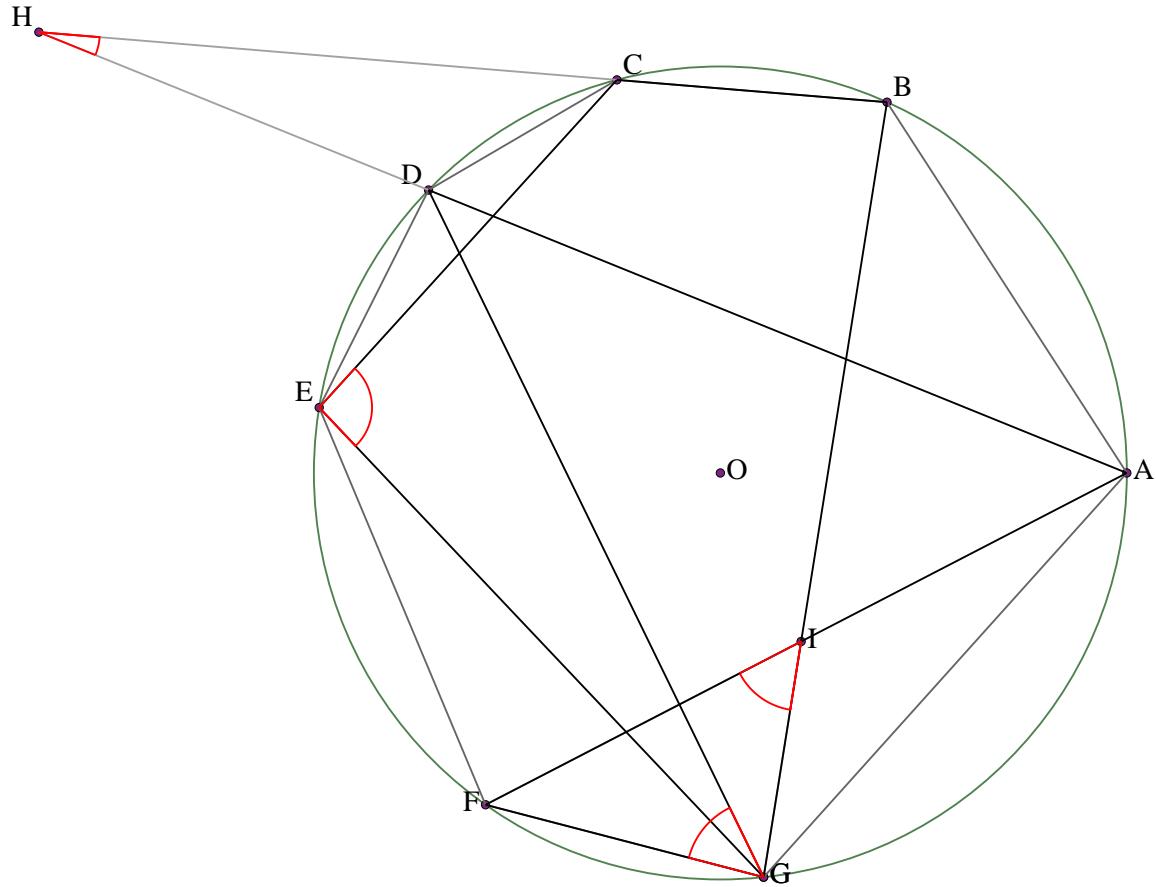


Let $ABCDEFG$ be a cyclic heptagon with center O . Let H be the intersection of BD and FG . Let I be the intersection of DA and GE . Let J be the intersection of AF and ED .

Angle $DCB = 128^\circ$. Angle $DIE = 41^\circ$. Angle $FJE = 57^\circ$.

Find angle DHF .

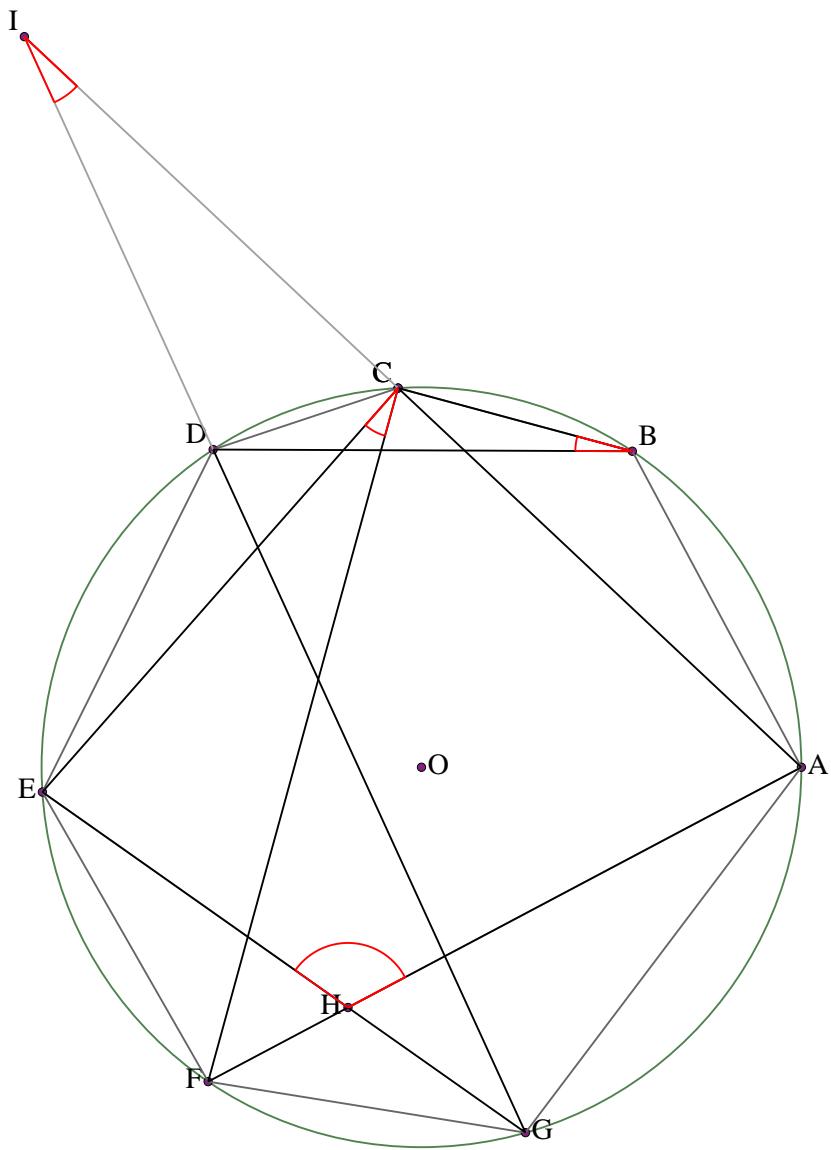
Example 141



Let $ABCDEFG$ be a cyclic heptagon with center O . Let H be the intersection of CB and DA . Let I be the intersection of BG and AF .

Prove that $CEG + FIG + DGF = CHD + 180$

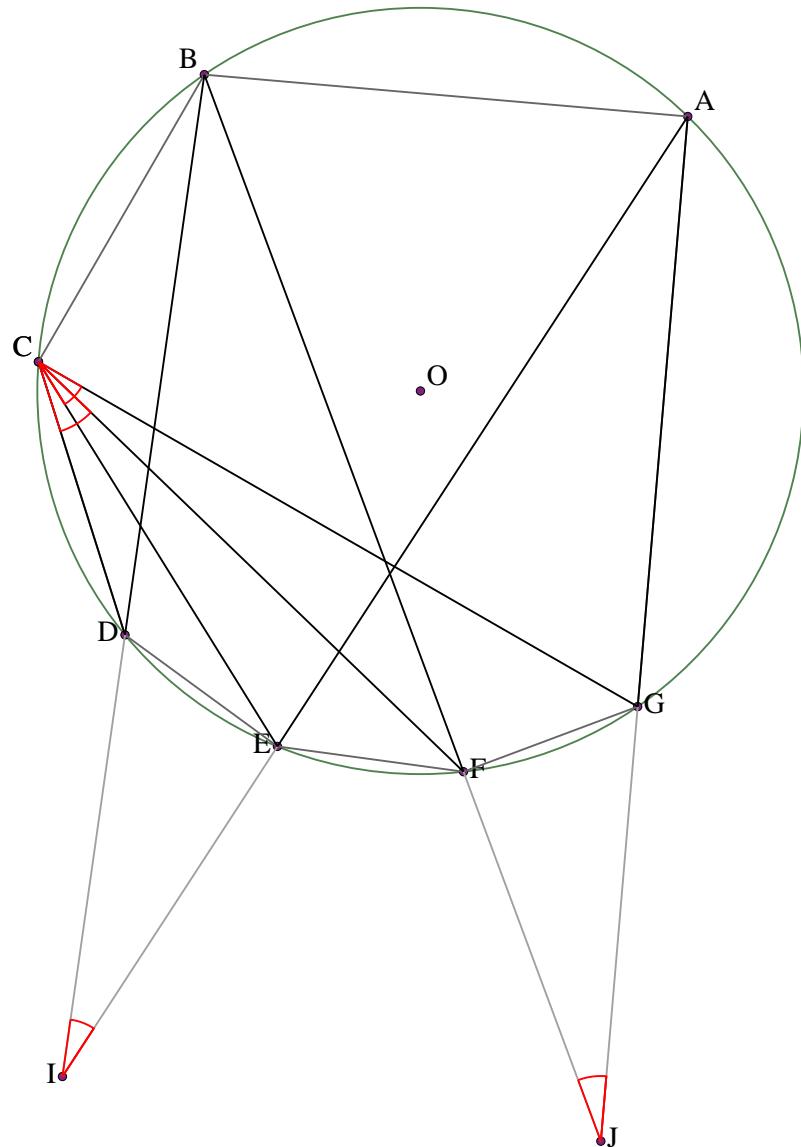
Example 142



Let ABCDEFG be a cyclic heptagon with center O. Let H be the intersection of FA and GE. Let I be the intersection of AC and DG.

Prove that $ECF + CBD + AHE + CID = 180$

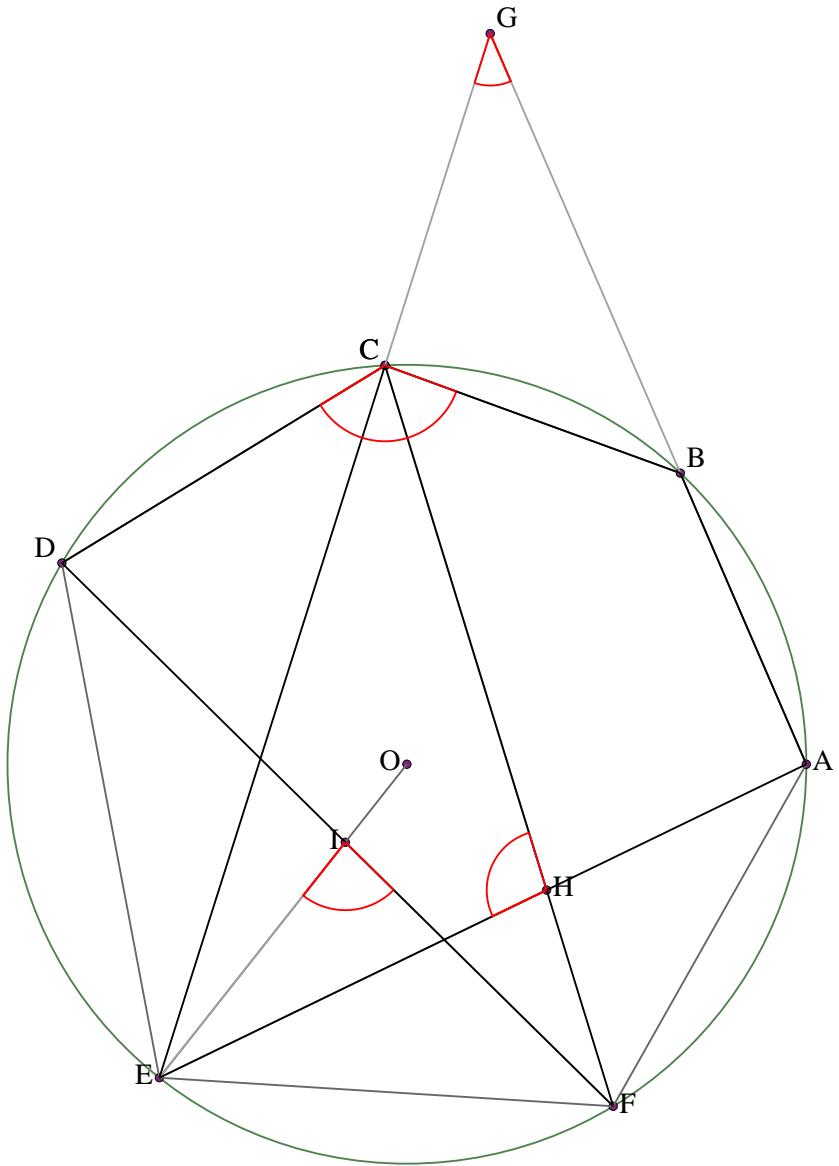
Example 143



Let ABCDEFG be a cyclic heptagon with center O. Let I be the intersection of EA and BD. Let J be the intersection of AG and FB.

Prove that $\angle DIE + \angle DCF = \angle ECG + \angle FJG$

Example 144

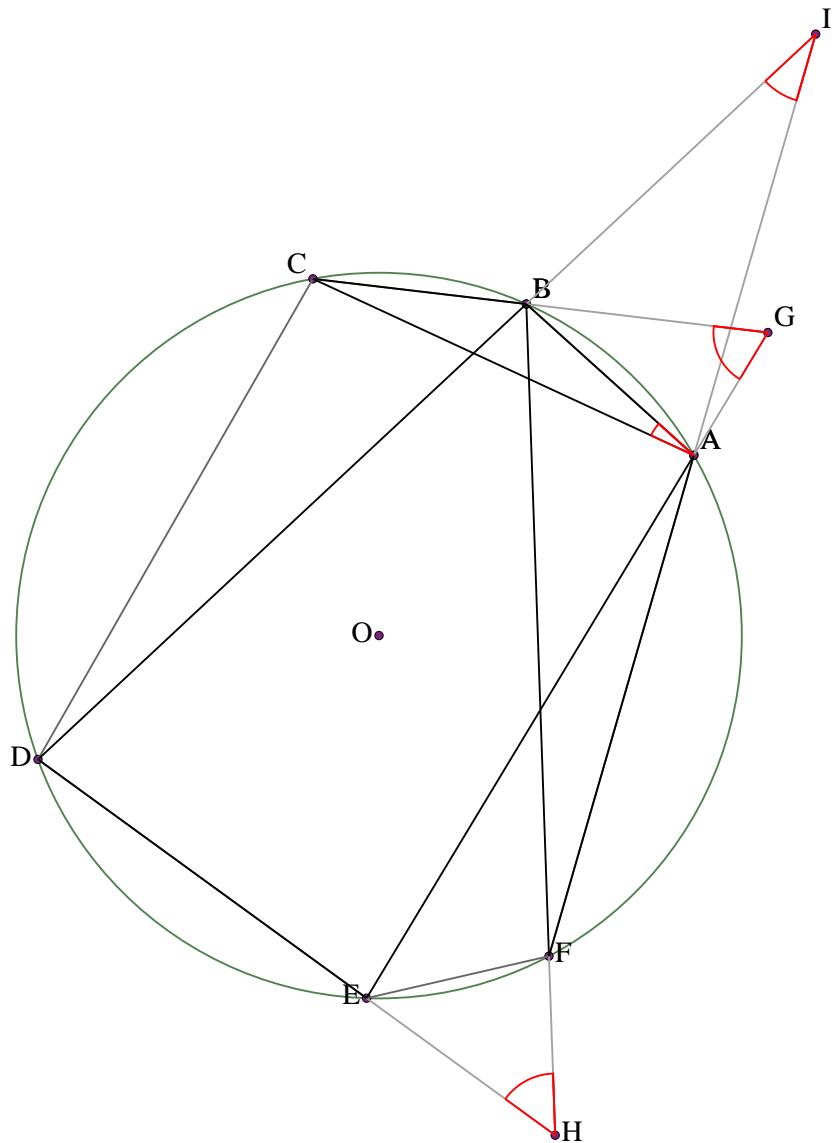


Let $ABCDEF$ be a cyclic hexagon with center O . Let G be the intersection of BA and EC . Let H be the intersection of AE and FC . Let I be the intersection of OE and DF .

Angle $BGC = 41^\circ$. Angle $EHC = 99^\circ$. Angle $DCB = 129^\circ$.

Find angle EIF .

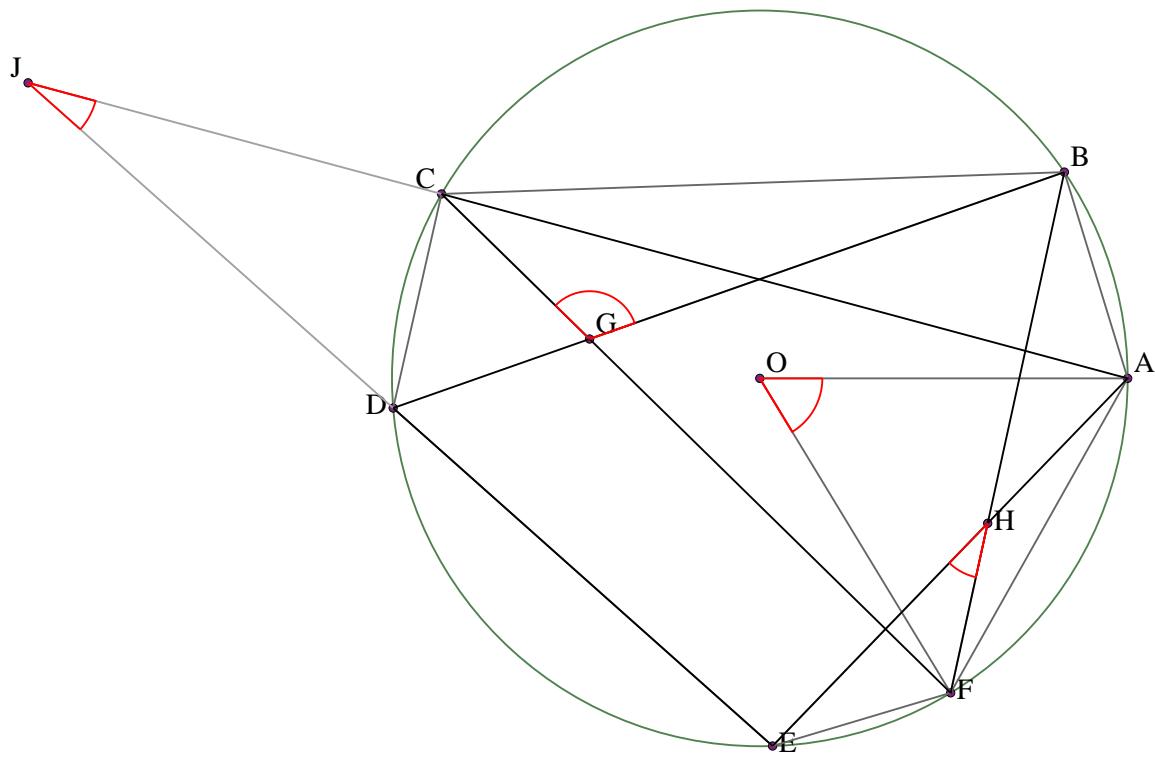
Example 145



Let $ABCDEF$ be a cyclic hexagon with center O . Let G be the intersection of CB and AE . Let H be the intersection of BF and ED . Let I be the intersection of FA and DB .

Prove that $EHF + AIB = BAC + AGB$

Example 146

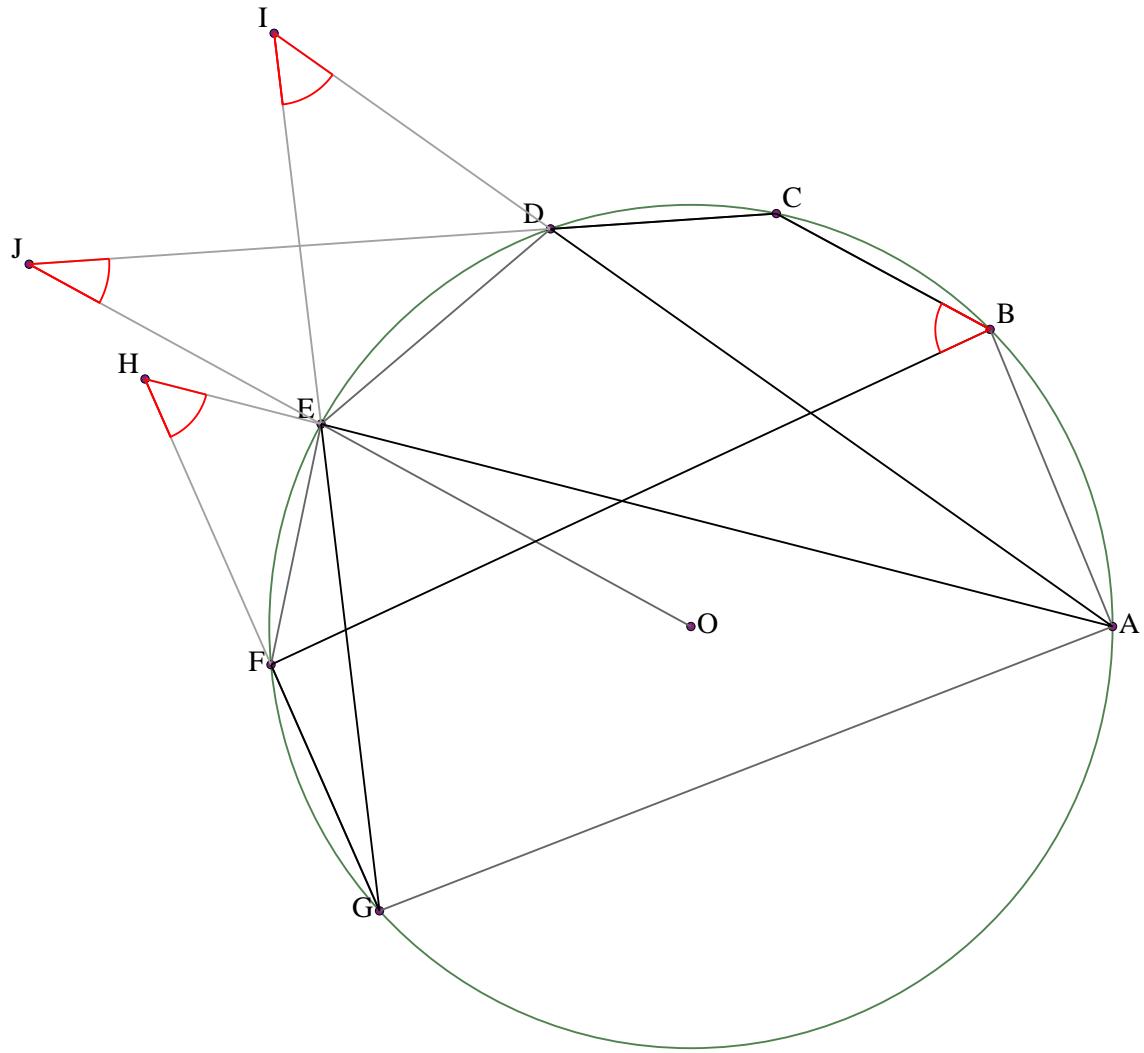


Let $ABCDEF$ be a cyclic hexagon with center O . Let G be the intersection of DB and FC . Let H be the intersection of BF and AE . Let J be the intersection of CA and ED .

Angle $CJD = x$. Angle $BGC = y$. Angle $FOA = z$.

Find angle FHE .

Example 147

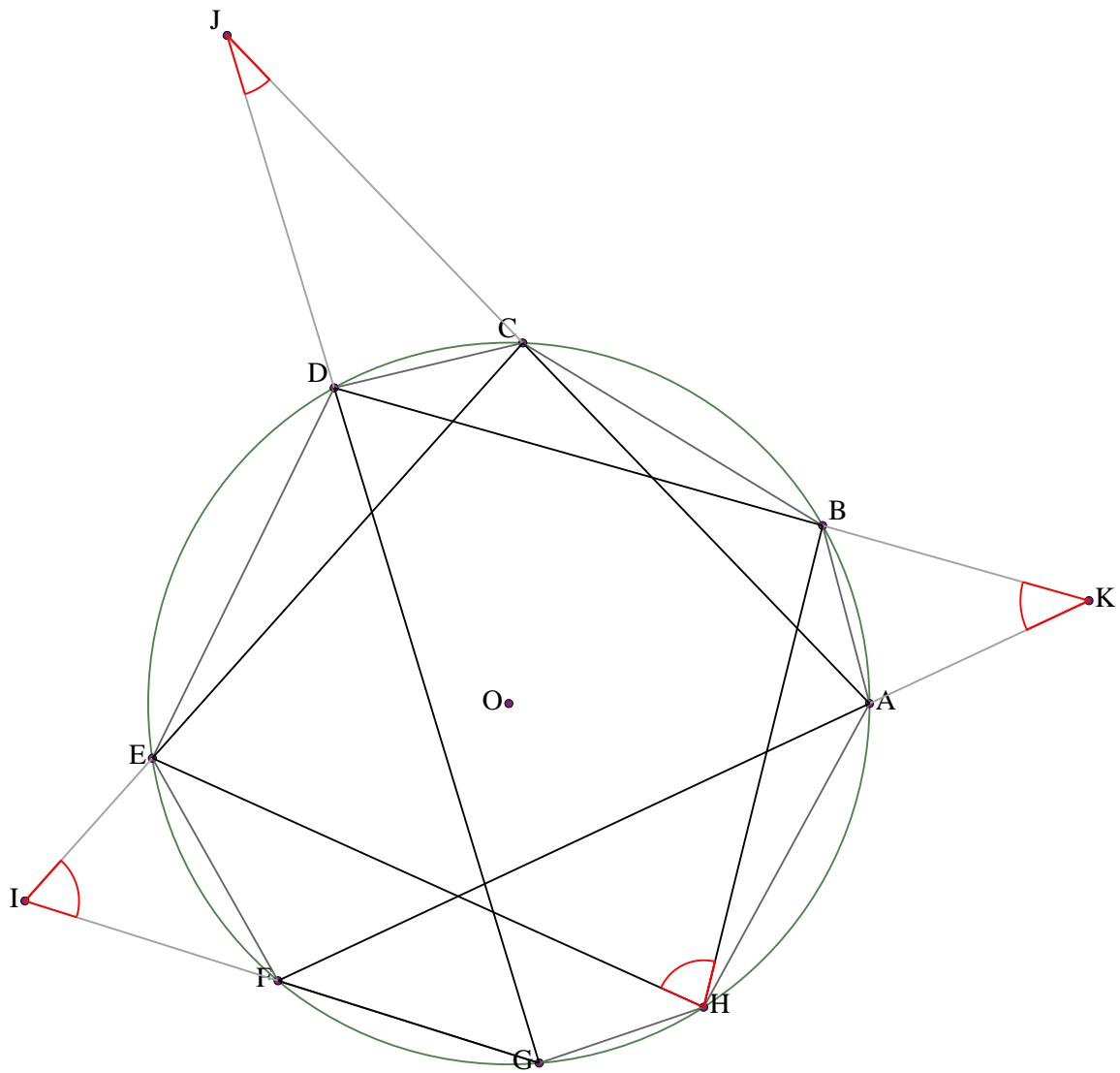


Let $ABCDEFG$ be a cyclic heptagon with center O . Let H be the intersection of FG and EA . Let I be the intersection of GE and AD . Let J be the intersection of OE and DC .

Angle $CBF = x$. Angle $FHE = y$. Angle $EJD = z$.

Find angle EID .

Example 148

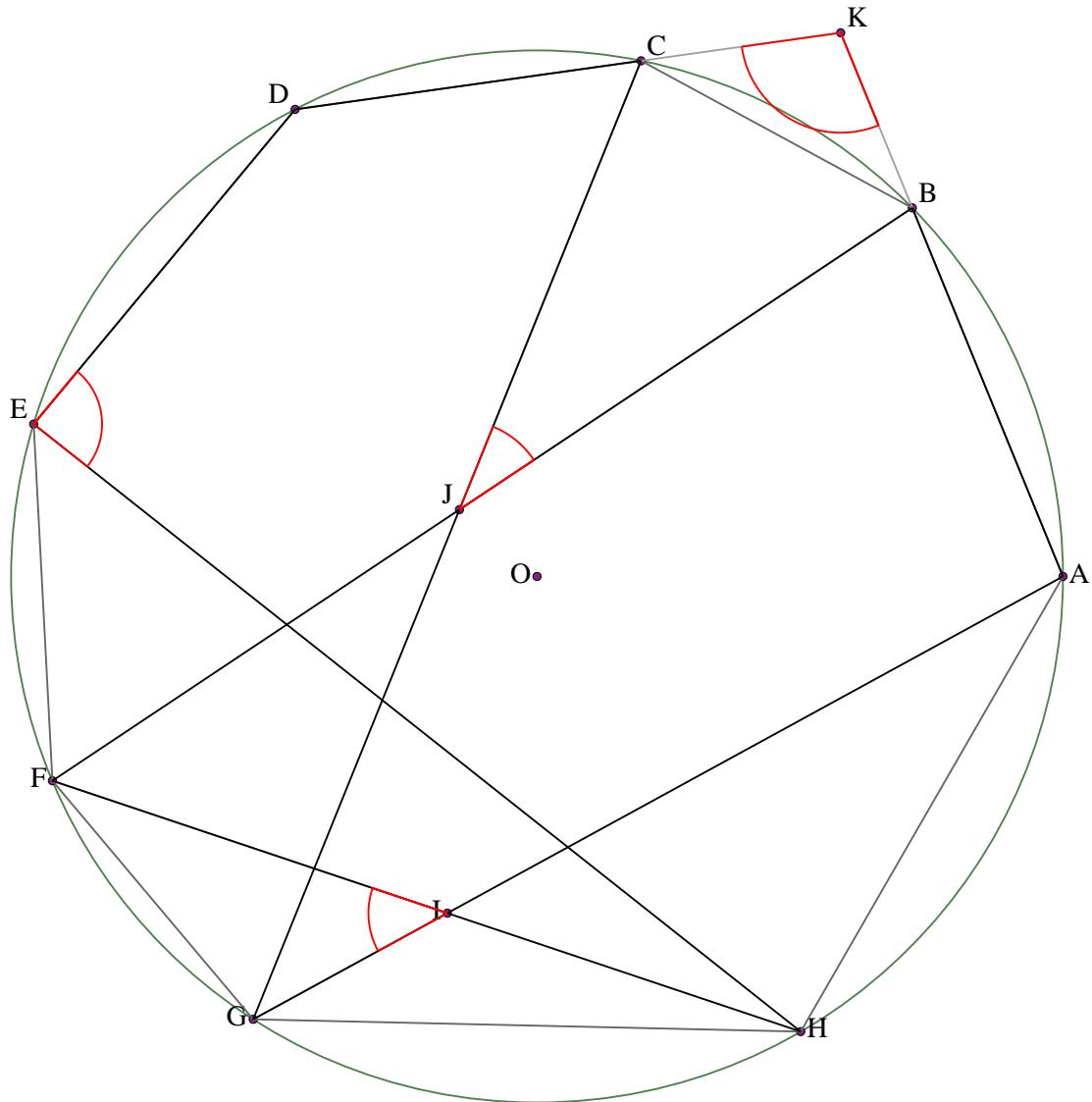


Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of EC and FG . Let J be the intersection of CA and GD . Let K be the intersection of AF and DB .

Angle $BHE = 80^\circ$. Angle $CJD = 27^\circ$. Angle $AKB = 41^\circ$.

Find angle EIF .

Example 149

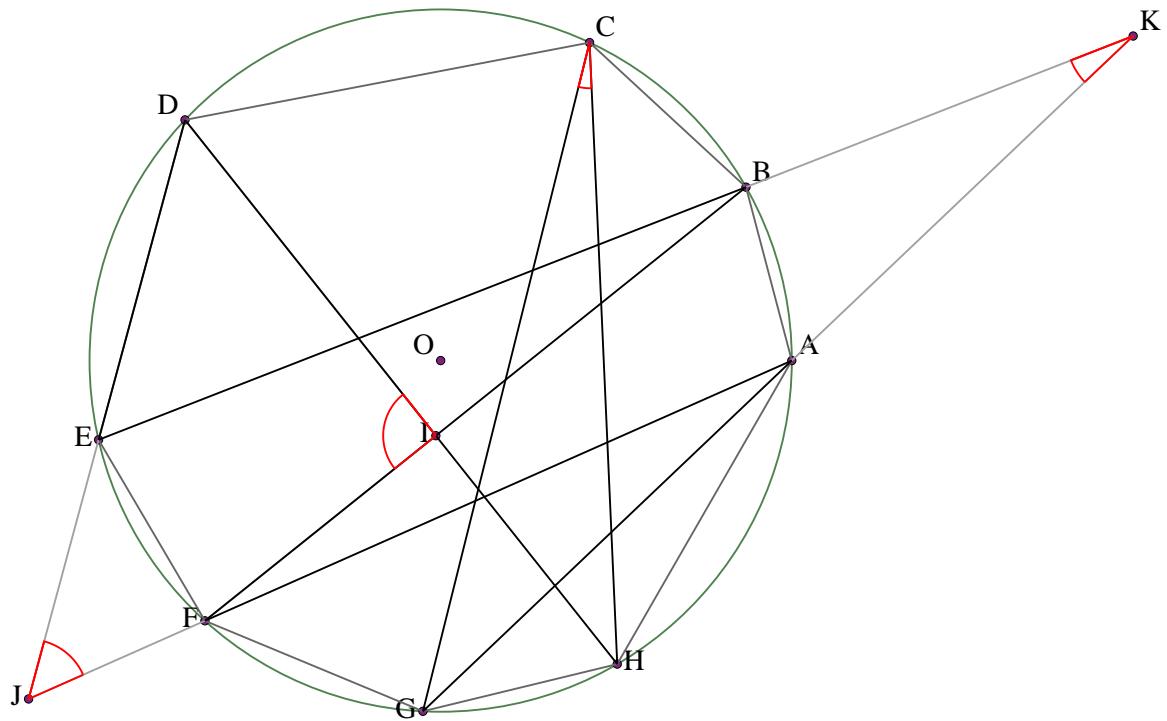


Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of HF and AG . Let J be the intersection of FB and GC . Let K be the intersection of BA and CD .

Angle $DEH = x$. Angle $BJC = y$. Angle $BKC = z$.

Find angle FIG .

Example 150

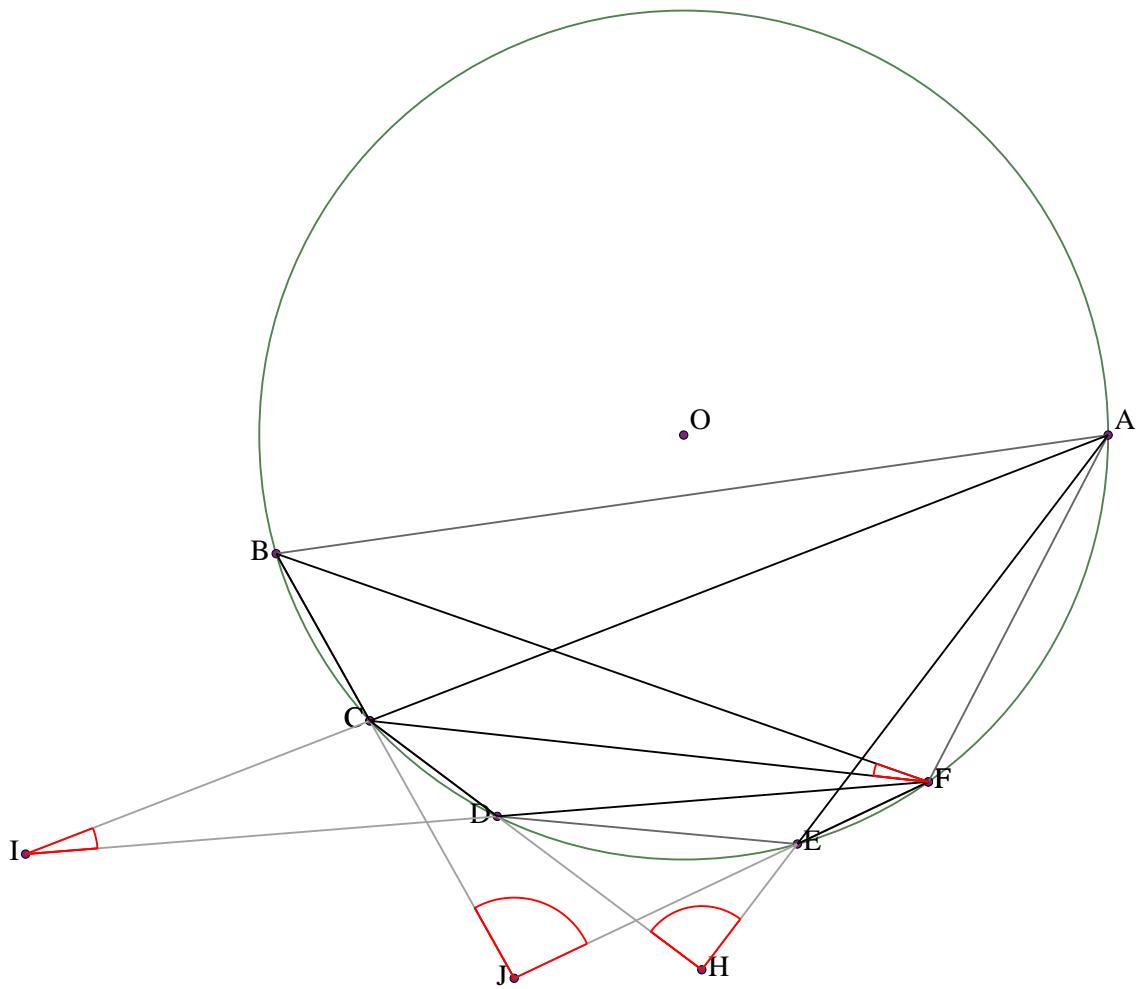


Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of HD and BF . Let J be the intersection of DE and FA . Let K be the intersection of EB and AG .

Angle $GCH = x$. Angle $EJF = y$. Angle $BKA = z$.

Find angle DIF .

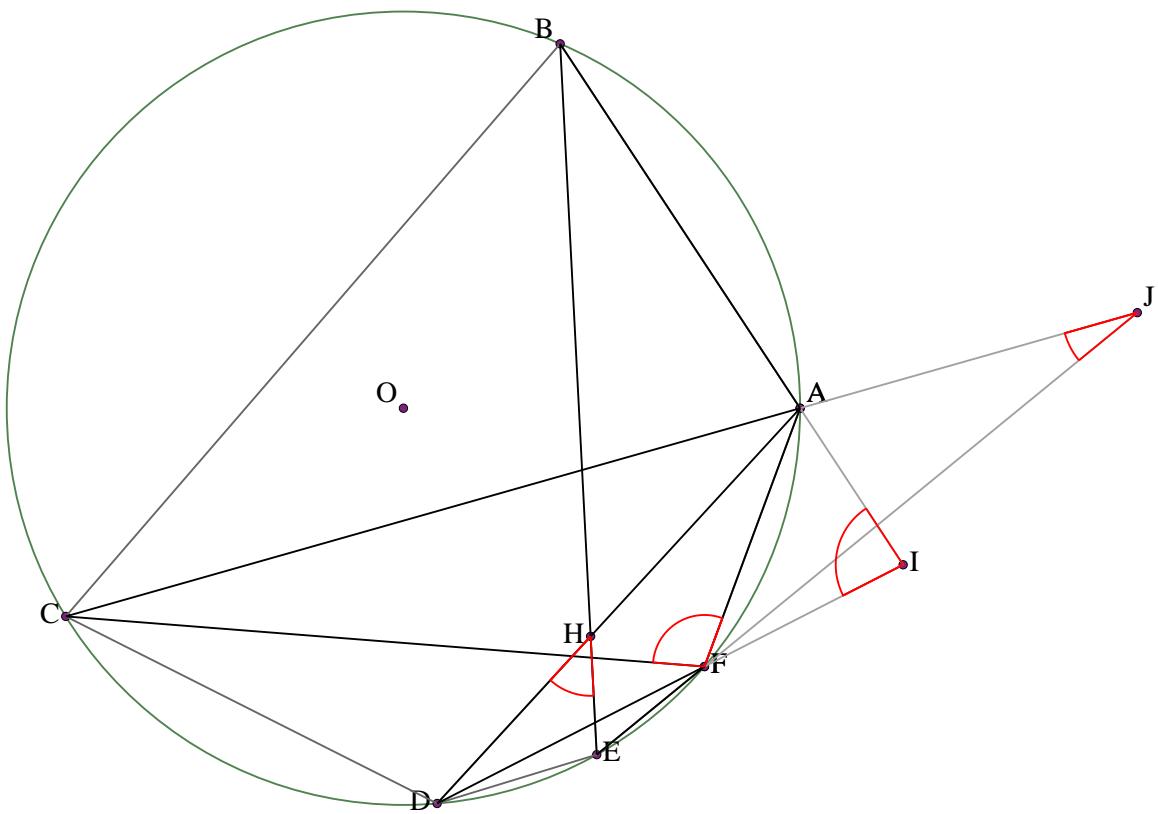
Example 151



Let ABCDEF be a cyclic hexagon with center O. Let H be the intersection of CD and AE. Let I be the intersection of DF and CA. Let J be the intersection of BC and EF.

Prove that $BFC + CJE = DHE + CID$

Example 152

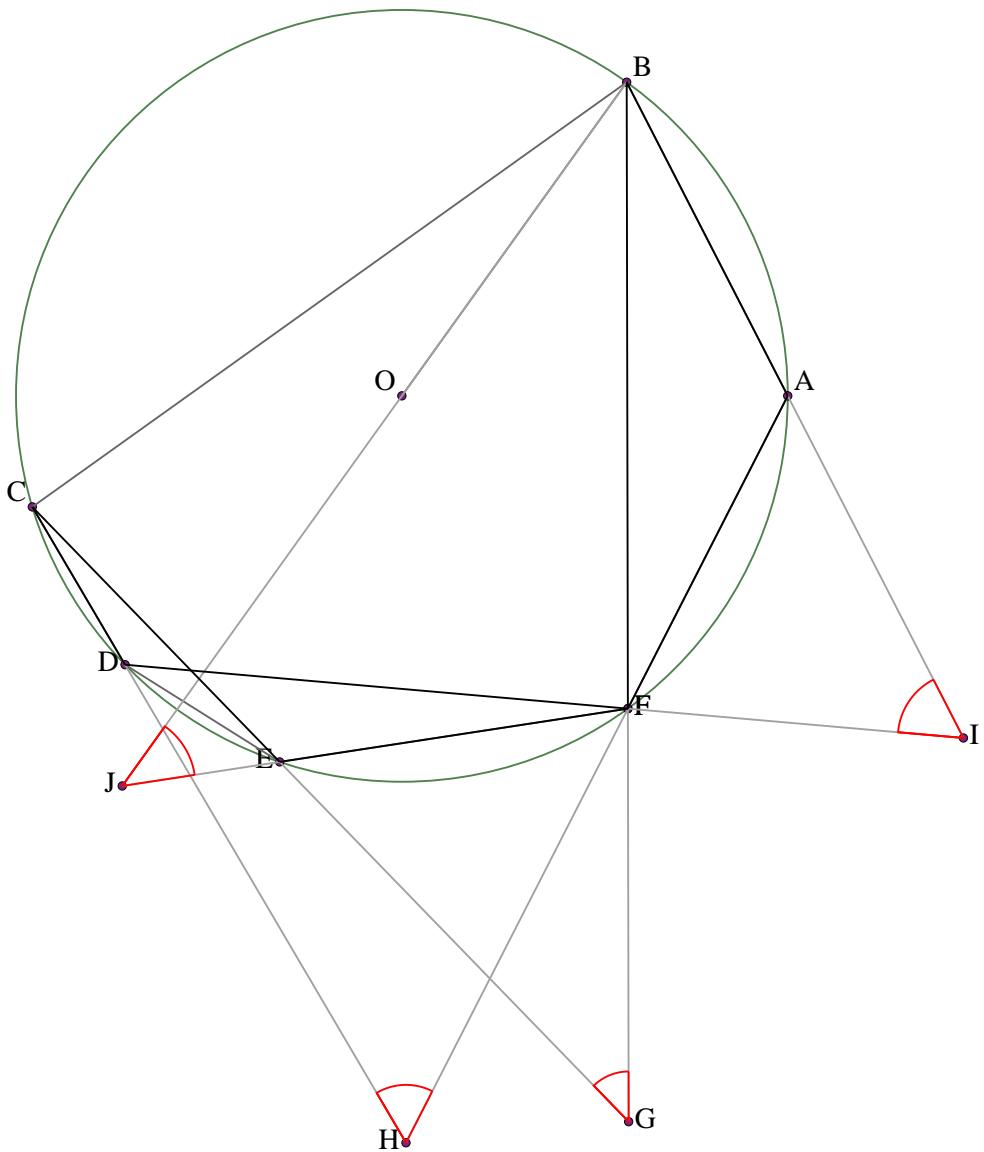


Let ABCDEF be a cyclic hexagon with center O. Let H be the intersection of AD and BE. Let I be the intersection of DF and AB. Let J be the intersection of CA and EF.

Angle DHE = x . Angle FIA = y . Angle AFC = z .

Find angle AJF.

Example 153

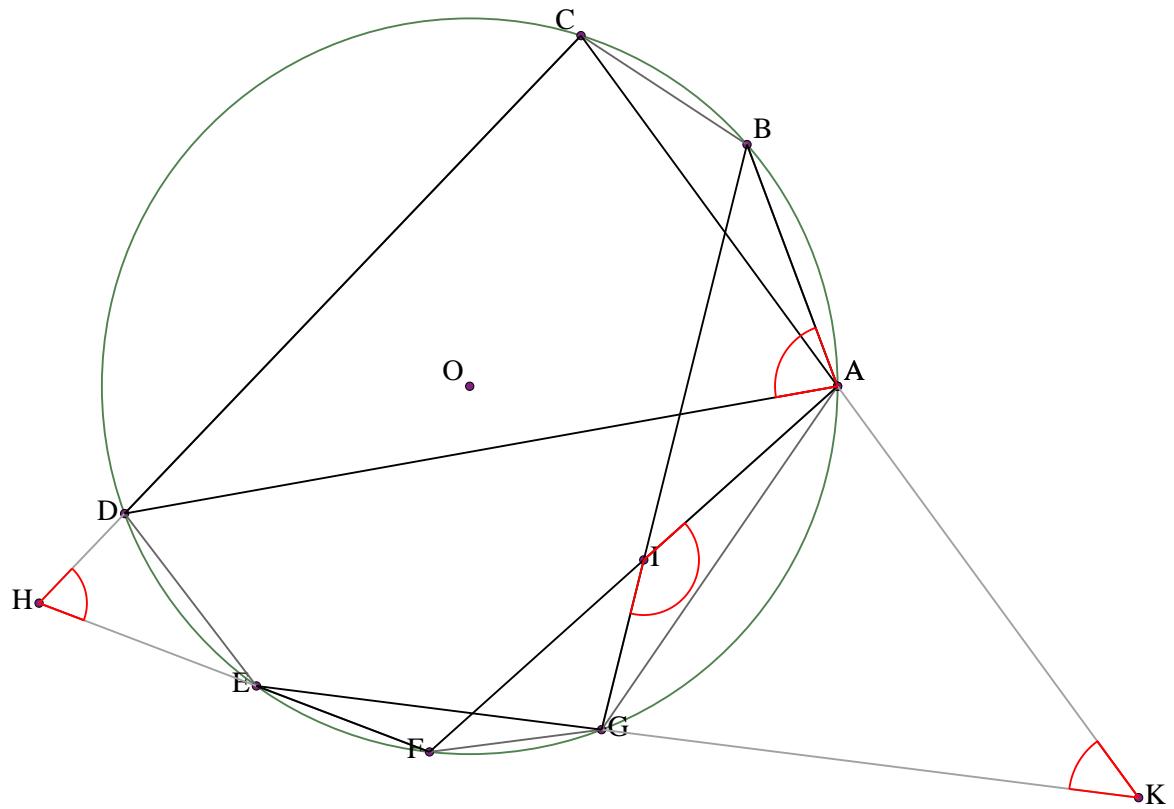


Let $ABCDEF$ be a cyclic hexagon with center O . Let G be the intersection of EC and FB . Let H be the intersection of CD and AF . Let I be the intersection of DF and BA . Let J be the intersection of OB and FE .

Angle $DHF = x$. Angle $EGF = y$. Angle $FIA = z$.

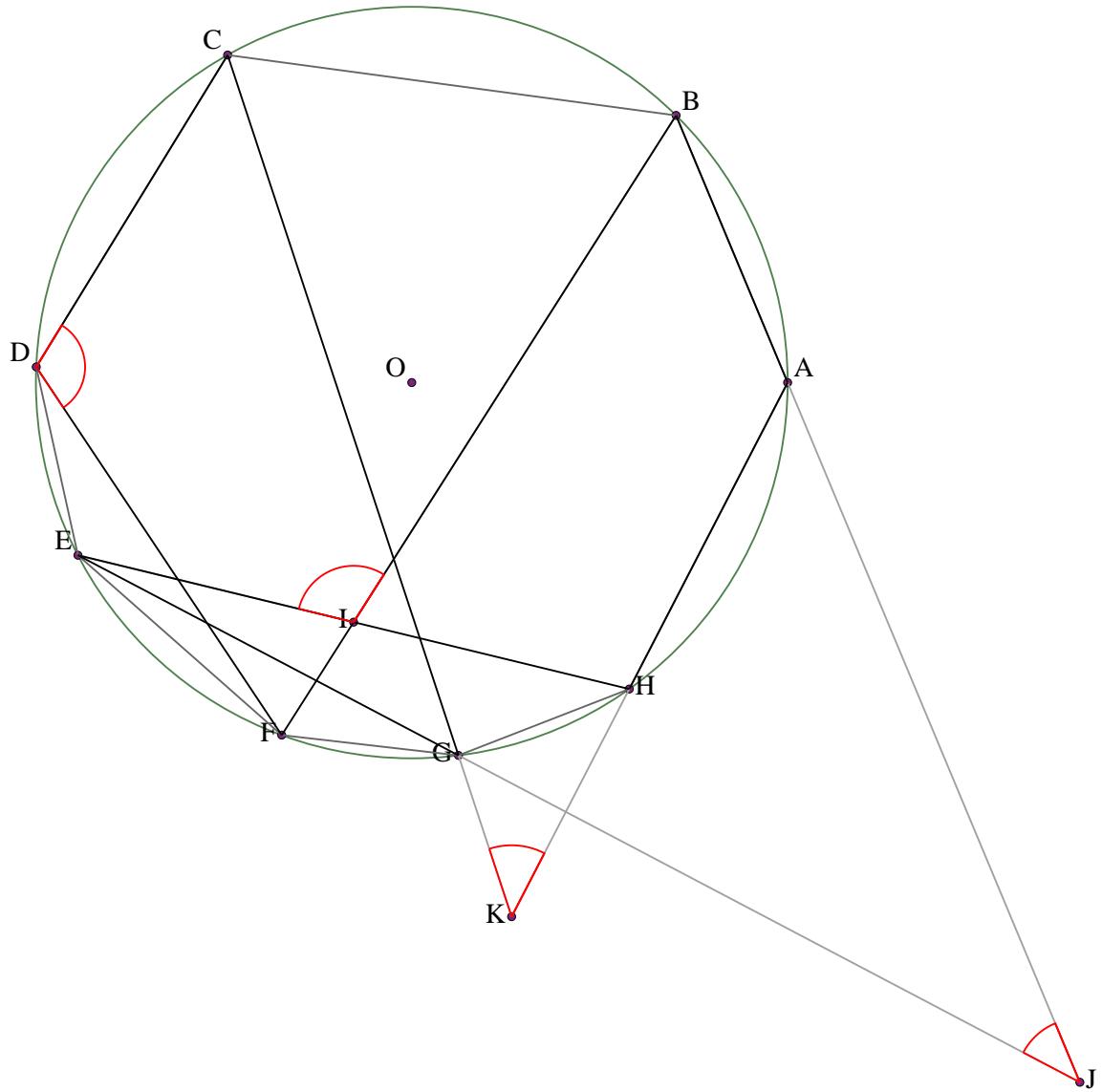
Find angle BJE .

Example 154



Let $ABCDEFG$ be a cyclic heptagon with center O . Let H be the intersection of EF and DC . Let I be the intersection of FA and BG . Let K be the intersection of CA and GE .
 Angle $DAB = 80^\circ$. Angle $EHD = 67^\circ$. Angle $AKG = 47^\circ$.
 Find angle AIG .

Example 155

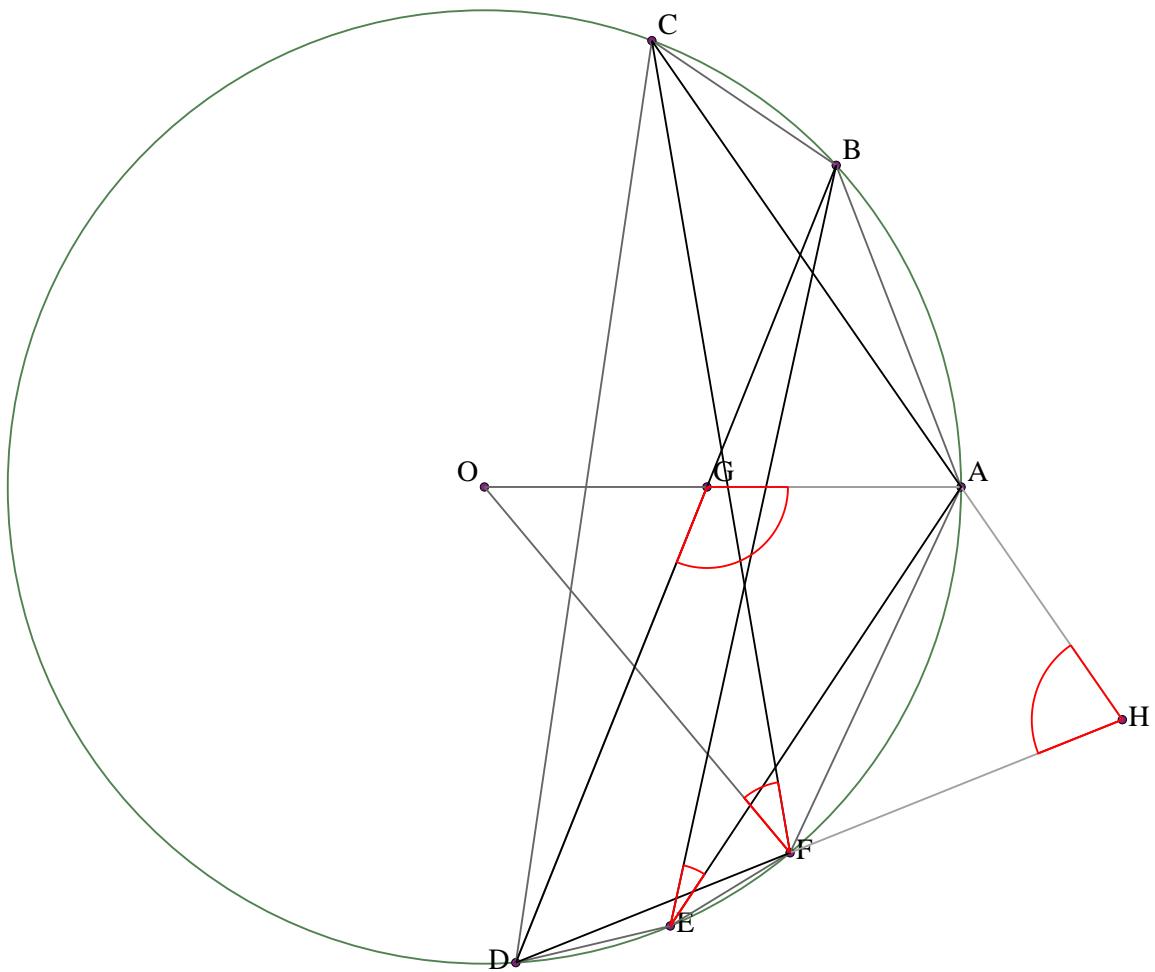


Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of FB and HE . Let J be the intersection of BA and EG . Let K be the intersection of AH and GC .

Angle $BIE = 109^\circ$. Angle $HKG = 46^\circ$. Angle $CDF = 115^\circ$.

Find angle AJG .

Example 156



Let $ABCDEF$ be a cyclic hexagon with center O . Let G be the intersection of BD and AO . Let H be the intersection of DF and CA .

Angle $AEB = 21^\circ$. Angle $DGA = 112^\circ$. Angle $FHA = 77^\circ$.

Find angle OFC .

Example 157

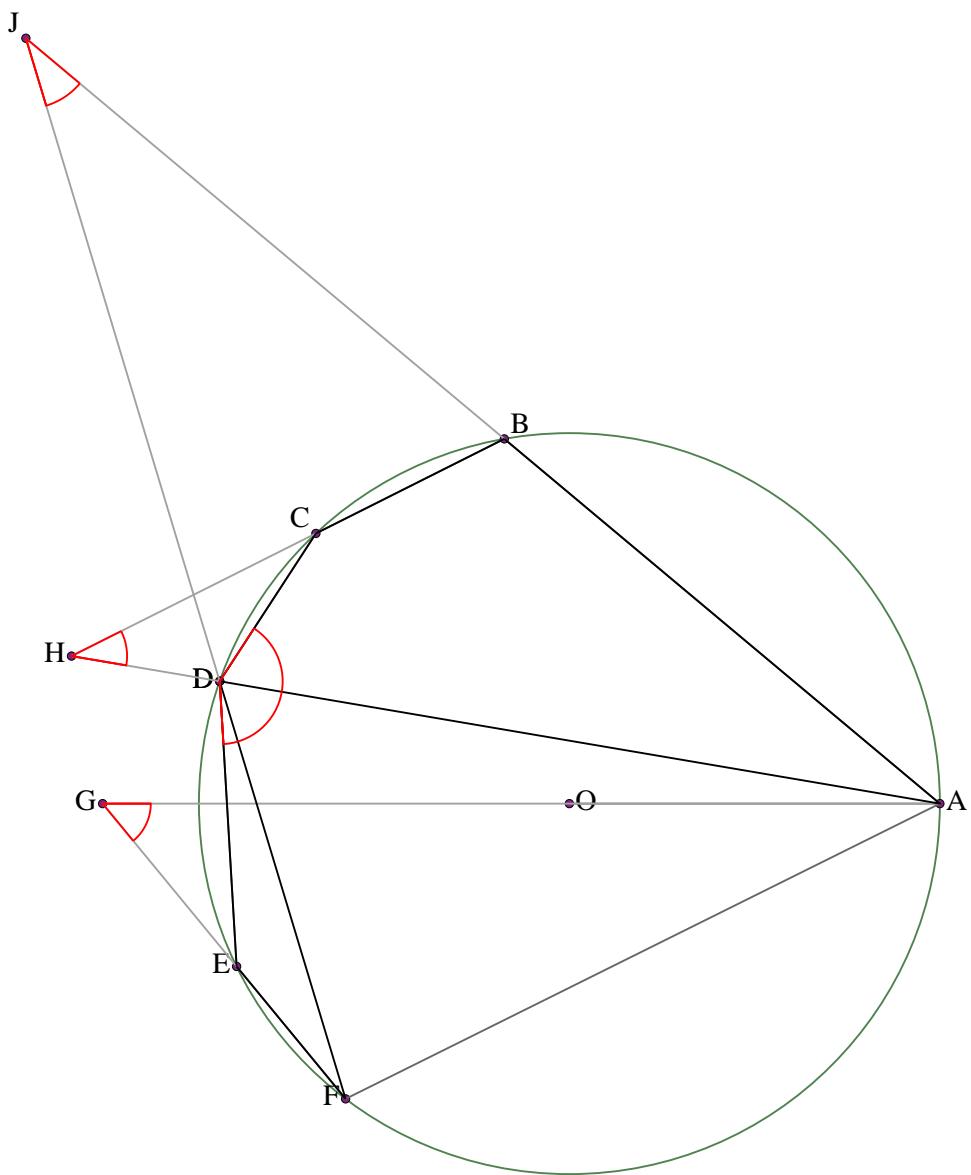


Let $ABCDEF$ be a cyclic hexagon with center O . Let G be the intersection of CA and BO . Let H be the intersection of AD and BC . Let I be the intersection of DB and CE .

Angle $EFC = 33^\circ$. Angle $DHC = 47^\circ$. Angle $BIE = 151^\circ$.

Find angle AGB .

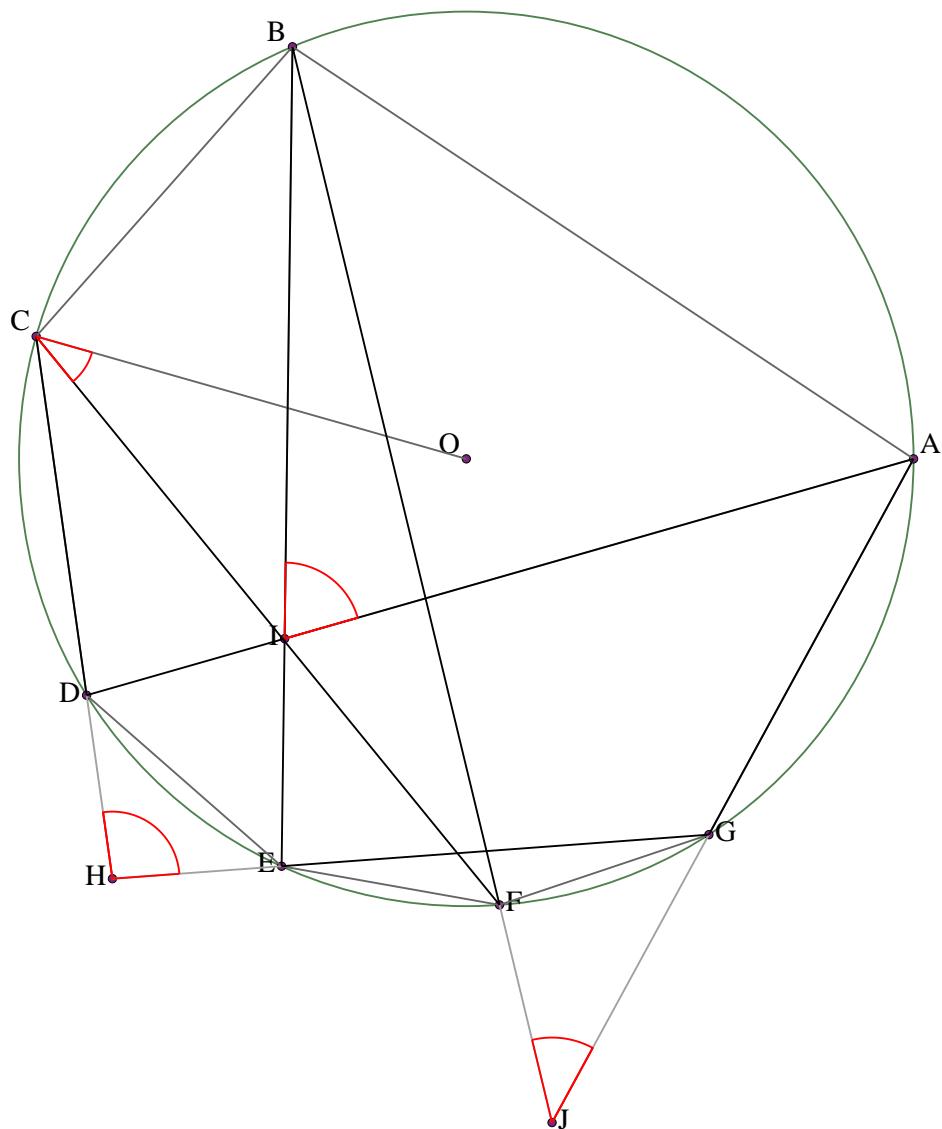
Example 158



Let ABCDEF be a cyclic hexagon with center O. Let G be the intersection of OA and EF. Let H be the intersection of AD and CB. Let J be the intersection of FD and BA.

Prove that $CDE + BJD = AGE + CHD + 90^\circ$

Example 159

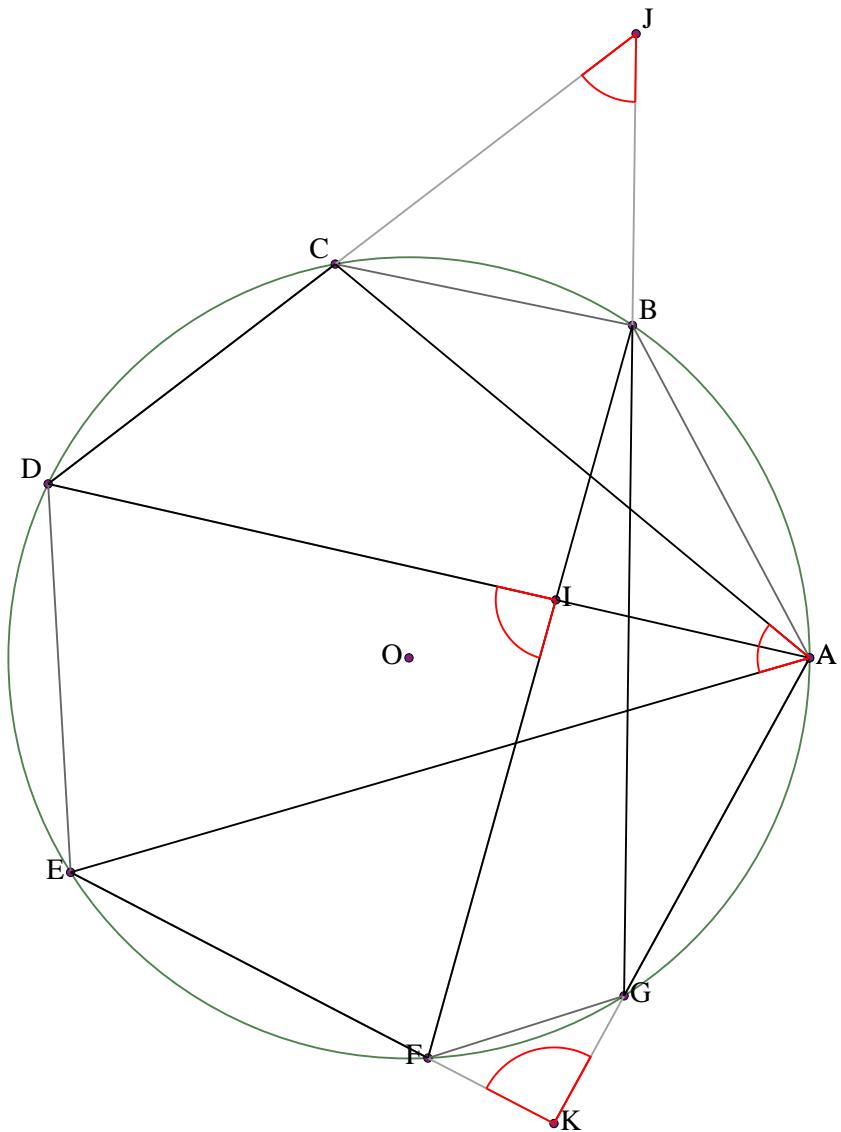


Let $ABCDEFG$ be a cyclic heptagon with center O . Let H be the intersection of CD and GE . Let I be the intersection of DA and EB . Let J be the intersection of AG and BF .

Angle $DHE = x$. Angle $AIB = y$. Angle $FCO = z$.

Find angle GJF .

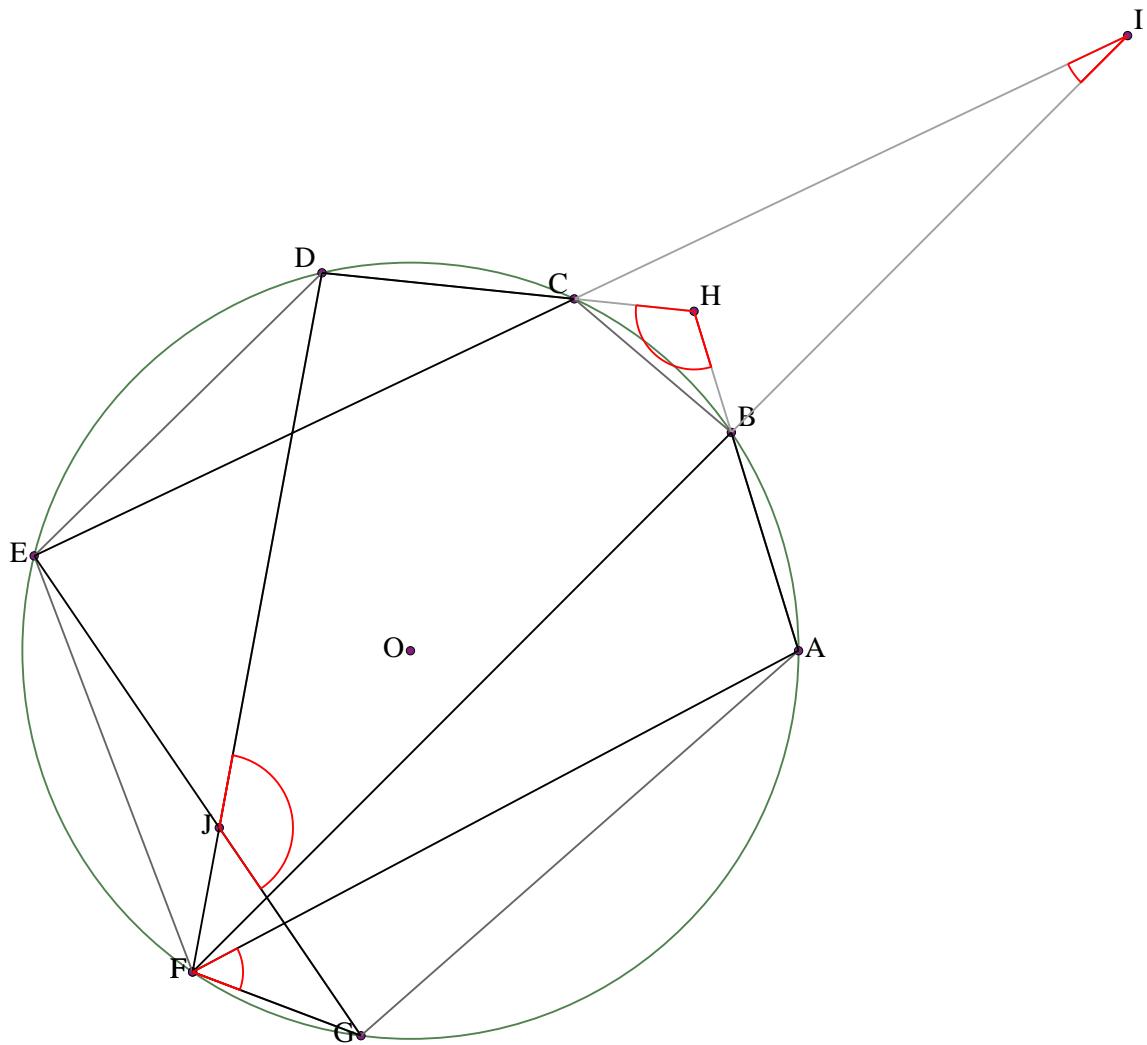
Example 160



Let $ABCDEFG$ be a cyclic heptagon with center O . Let I be the intersection of AD and BF . Let J be the intersection of DC and GB . Let K be the intersection of AG and FE .

Prove that $CAE + DIF = BJC + FKG$

Example 161

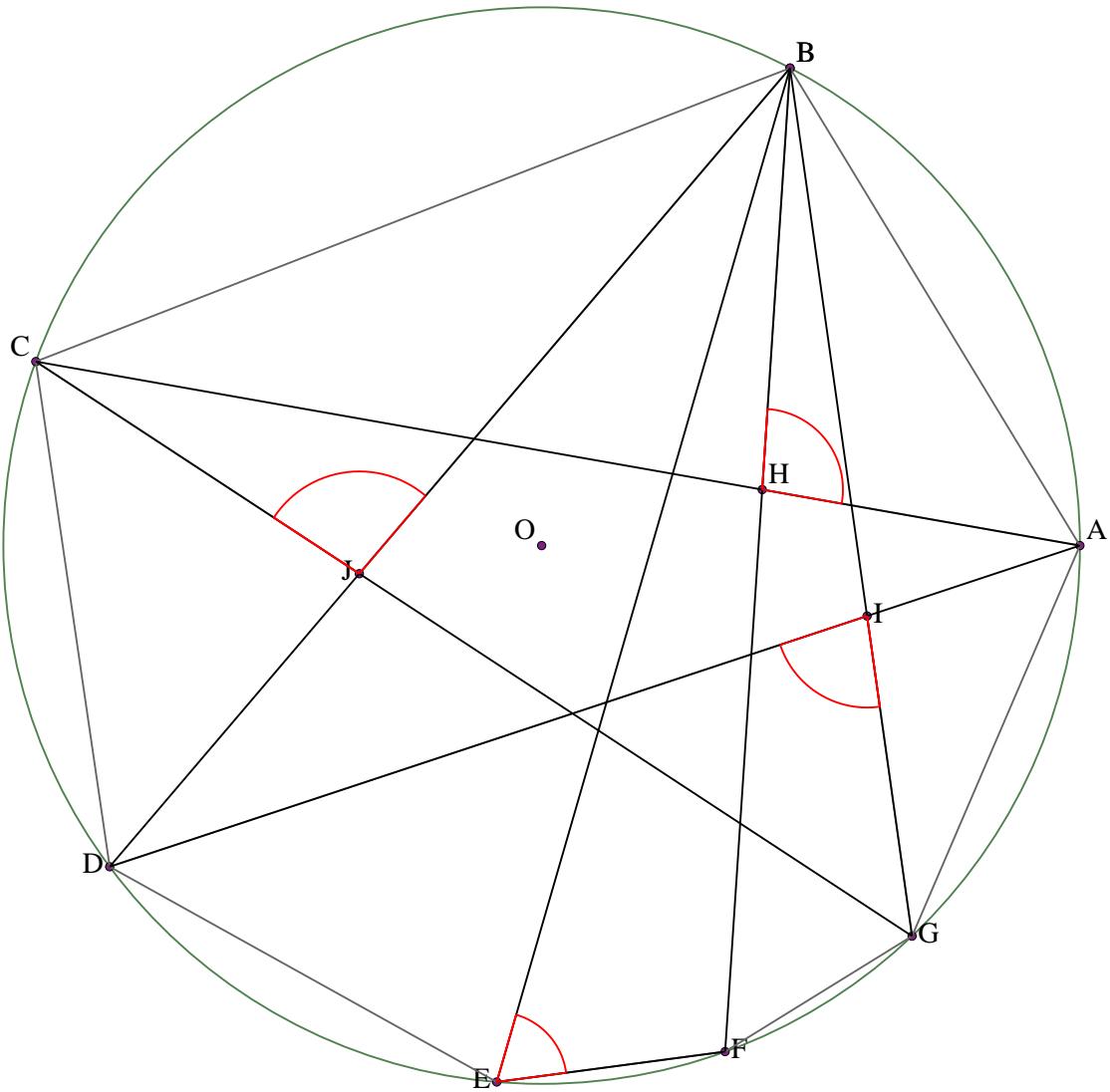


Let $ABCDEFG$ be a cyclic heptagon with center O . Let H be the intersection of AB and DC . Let I be the intersection of BF and CE . Let J be the intersection of FD and EG .

Angle $GFA = 49^\circ$. Angle $BIC = 20^\circ$. Angle $BHC = 113^\circ$.

Find angle DJG .

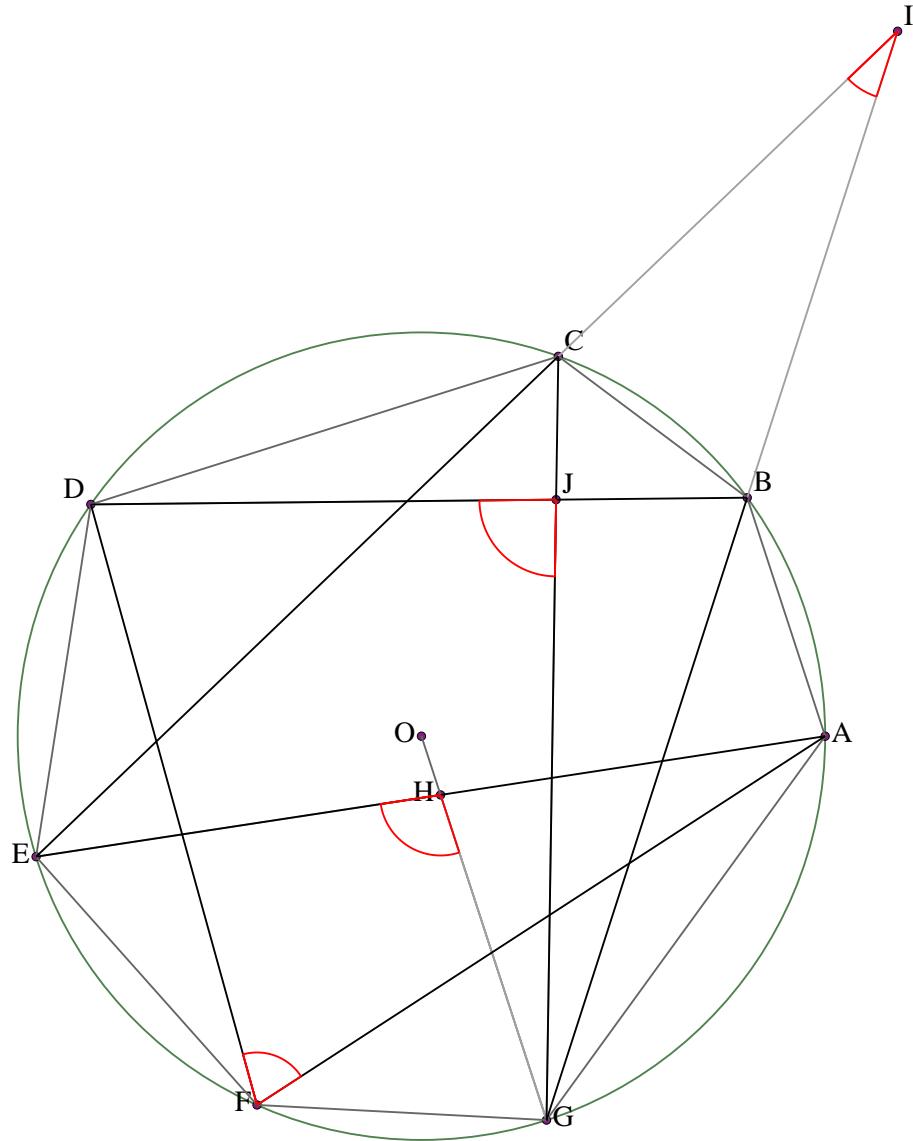
Example 162



Let $ABCDEFG$ be a cyclic heptagon with center O . Let H be the intersection of FB and CA . Let I be the intersection of BG and AD . Let J be the intersection of GC and DB .

Prove that $BEF + AHB + BJC = DIG + 180$

Example 163

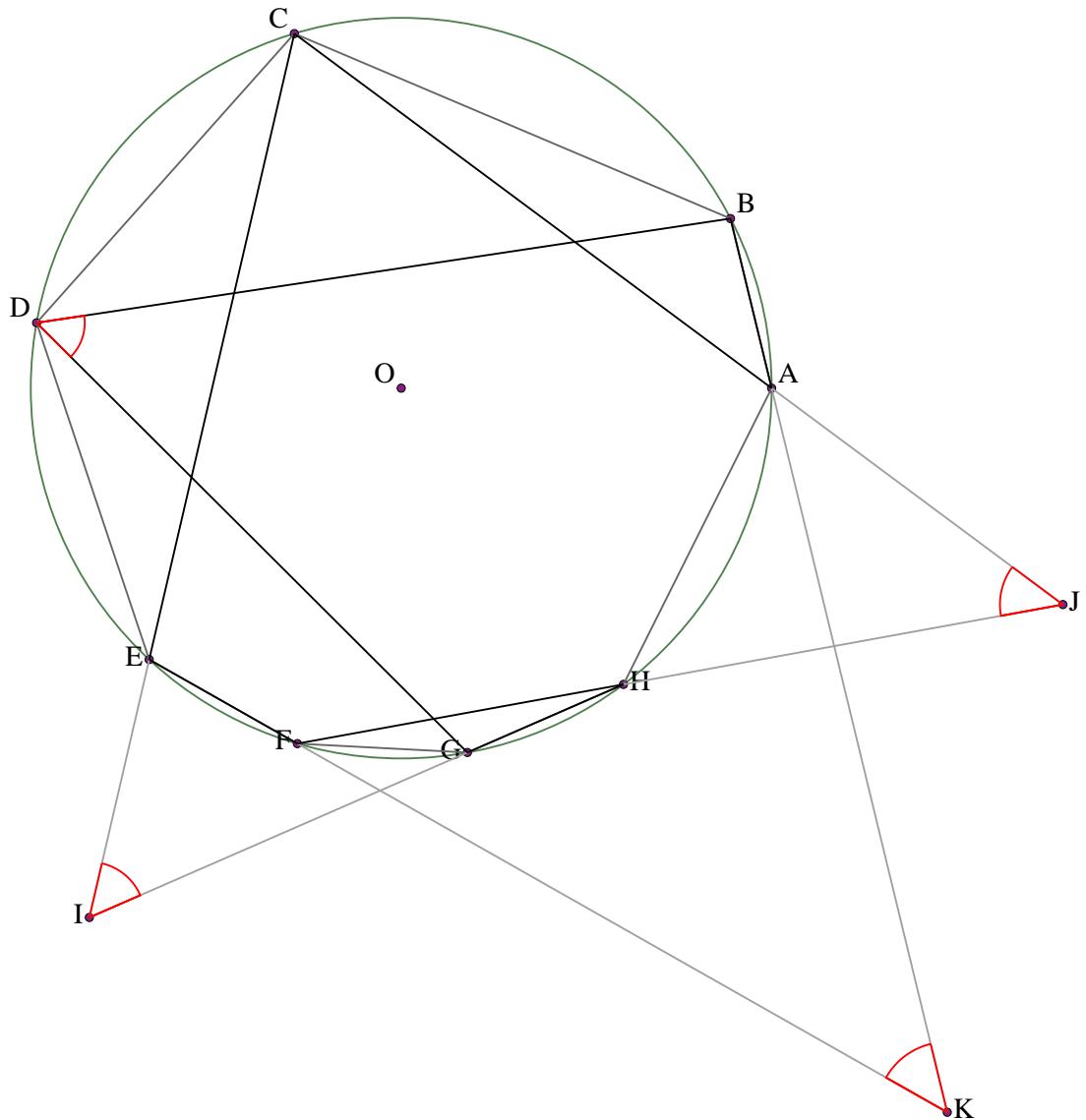


Let $ABCDEFG$ be a cyclic heptagon with center O . Let H be the intersection of AE and GO . Let I be the intersection of EC and GB . Let J be the intersection of CG and BD .

Angle $EHG = 99^\circ$. Angle $CIB = 28^\circ$. Angle $GJD = 89^\circ$.

Find angle DFA .

Example 164

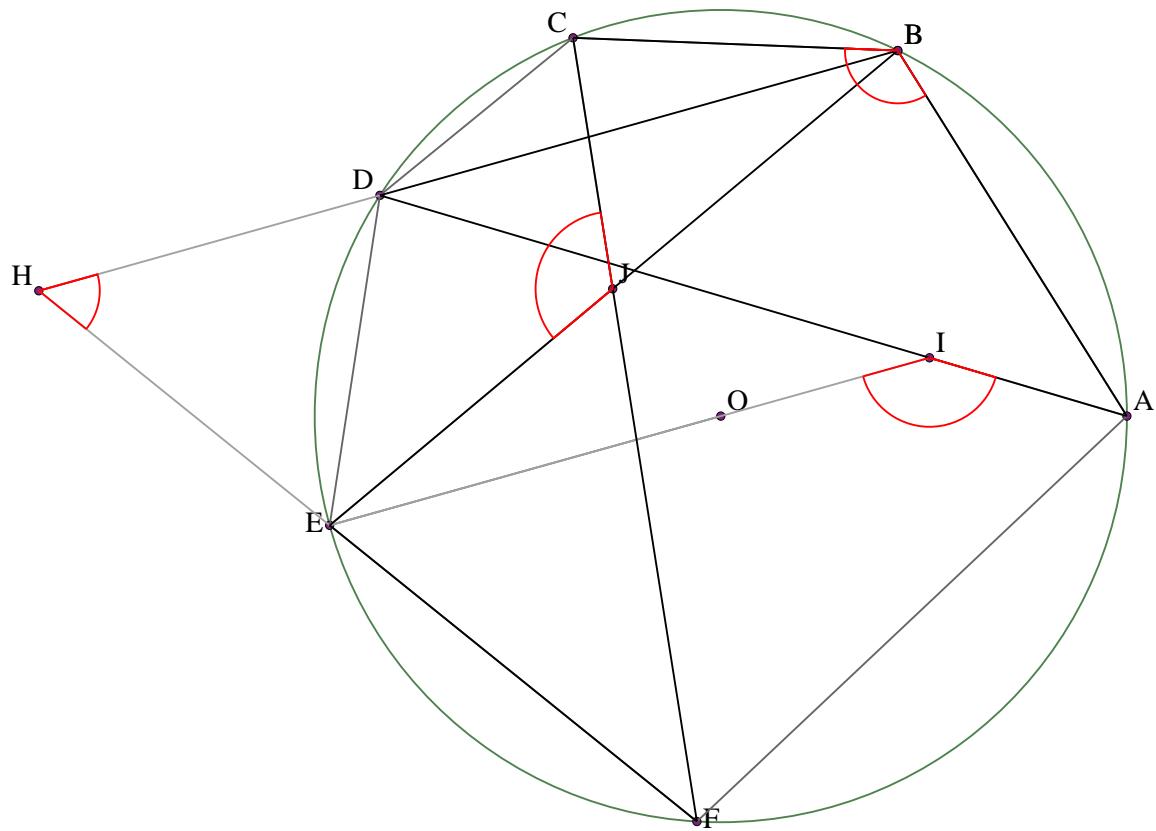


Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of GH and EC . Let J be the intersection of HF and CA . Let K be the intersection of FE and AB .

Angle $GIE = x$. Angle $HJA = y$. Angle $BDG = z$.

Find angle FKA .

Example 165

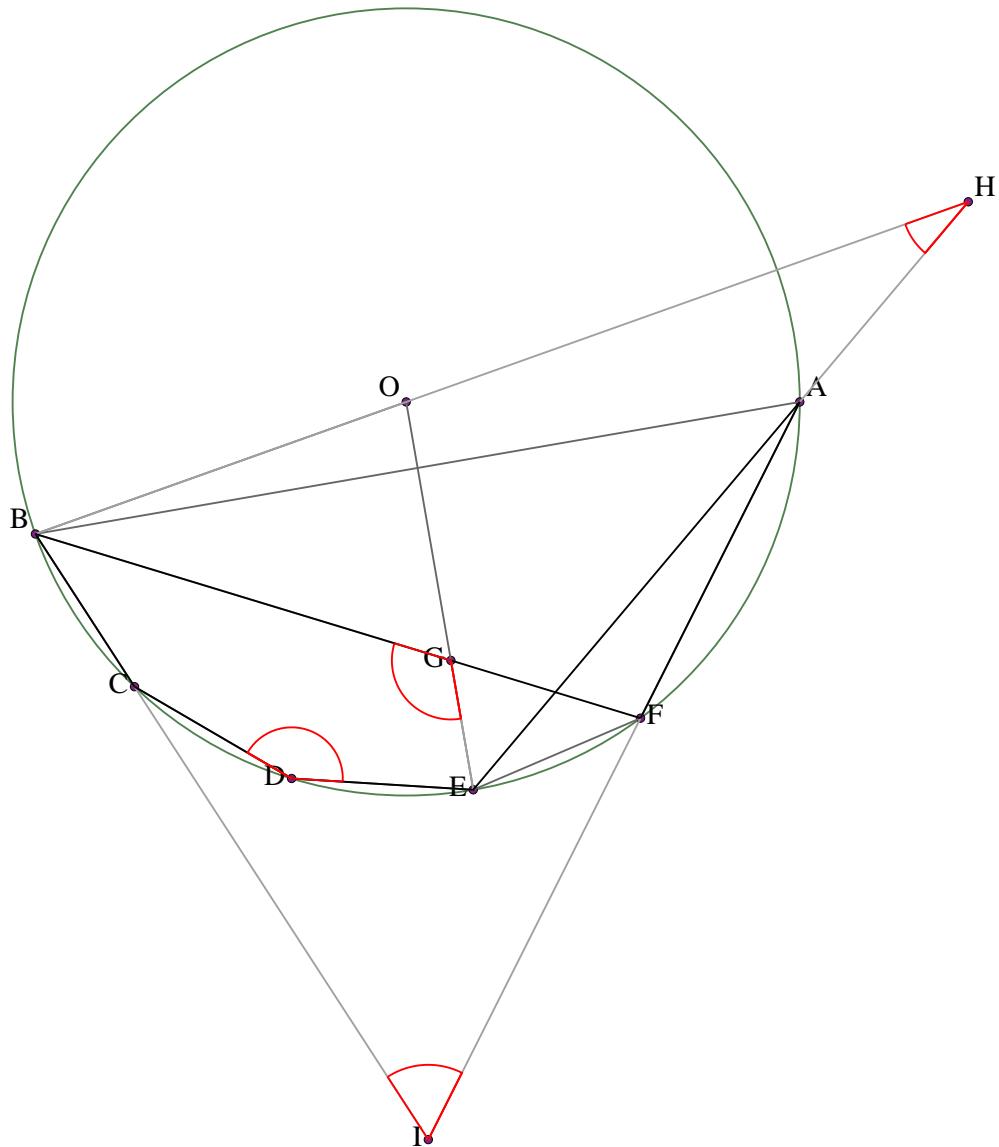


Let $ABCDEF$ be a cyclic hexagon with center O . Let H be the intersection of BD and EF . Let I be the intersection of DA and EO . Let J be the intersection of BE and FC .

Angle $CBA = x$. Angle $DHE = y$. Angle $EJC = z$.

Find angle AIE .

Example 166

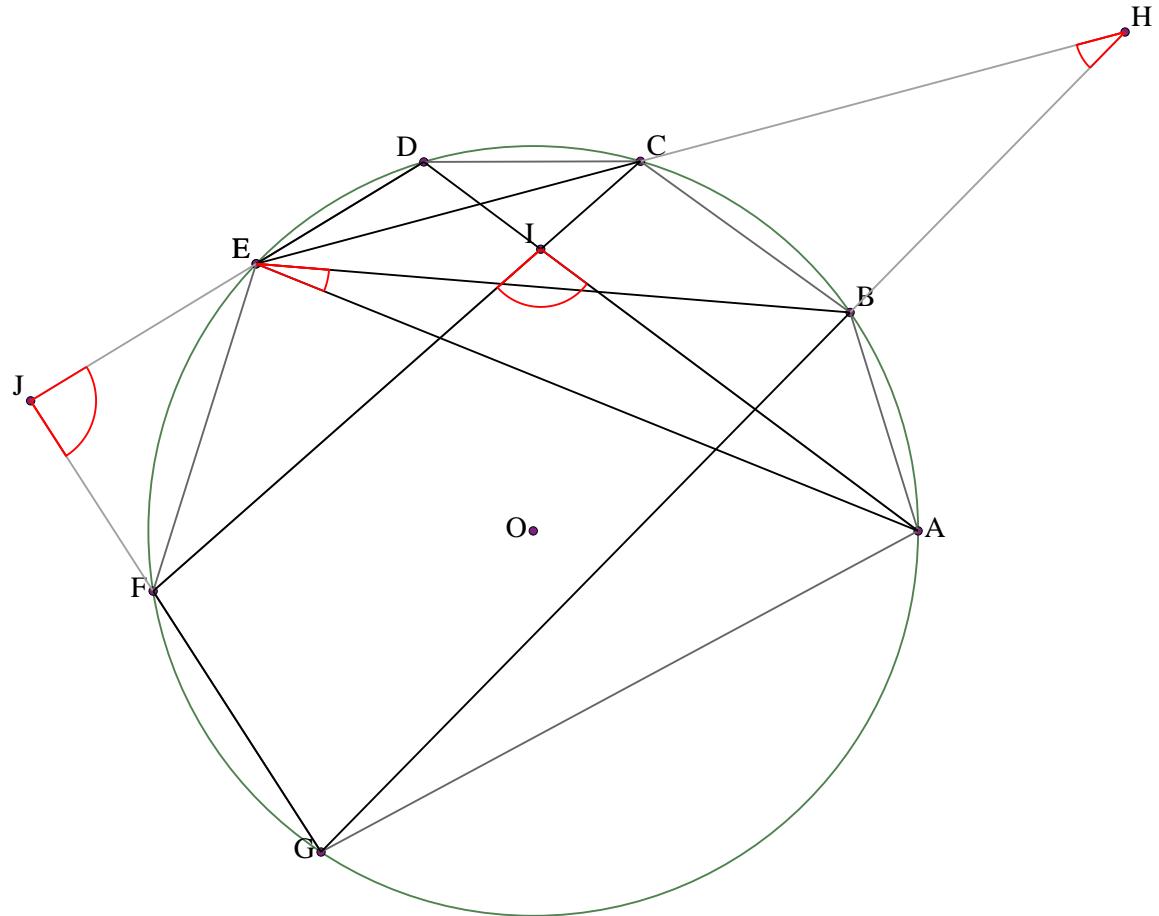


Let ABCDEF be a cyclic hexagon with center O. Let G be the intersection of OE and FB. Let H be the intersection of EA and BO. Let I be the intersection of AF and BC.

Angle CDE = x . Angle EGB = y . Angle AHB = z .

Find angle FIC.

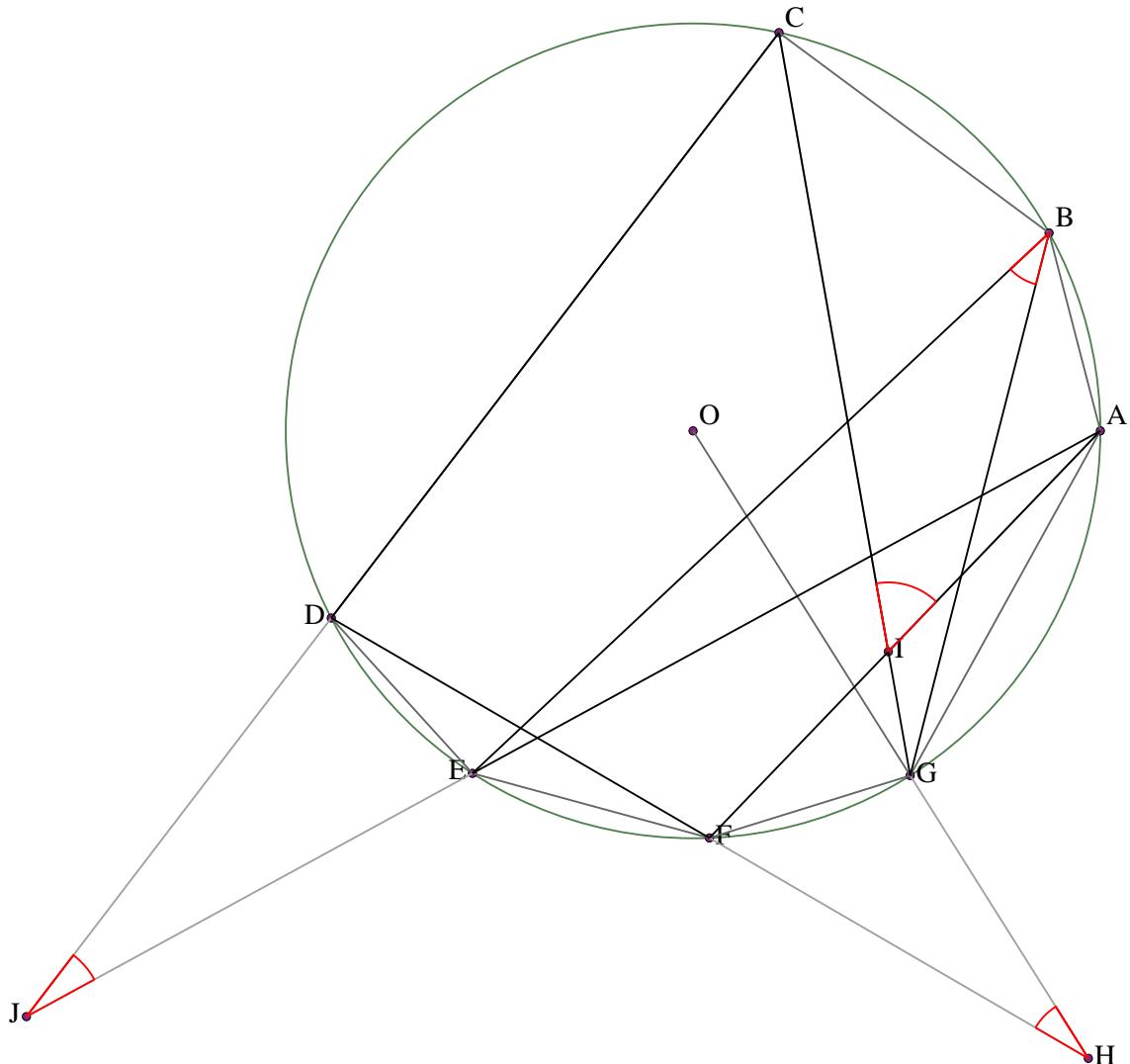
Example 167



Let $ABCDEFG$ be a cyclic heptagon with center O . Let H be the intersection of EC and GB . Let I be the intersection of CF and DA . Let J be the intersection of FG and ED .

Prove that $AIF + AEB = BHC + EJF$

Example 168

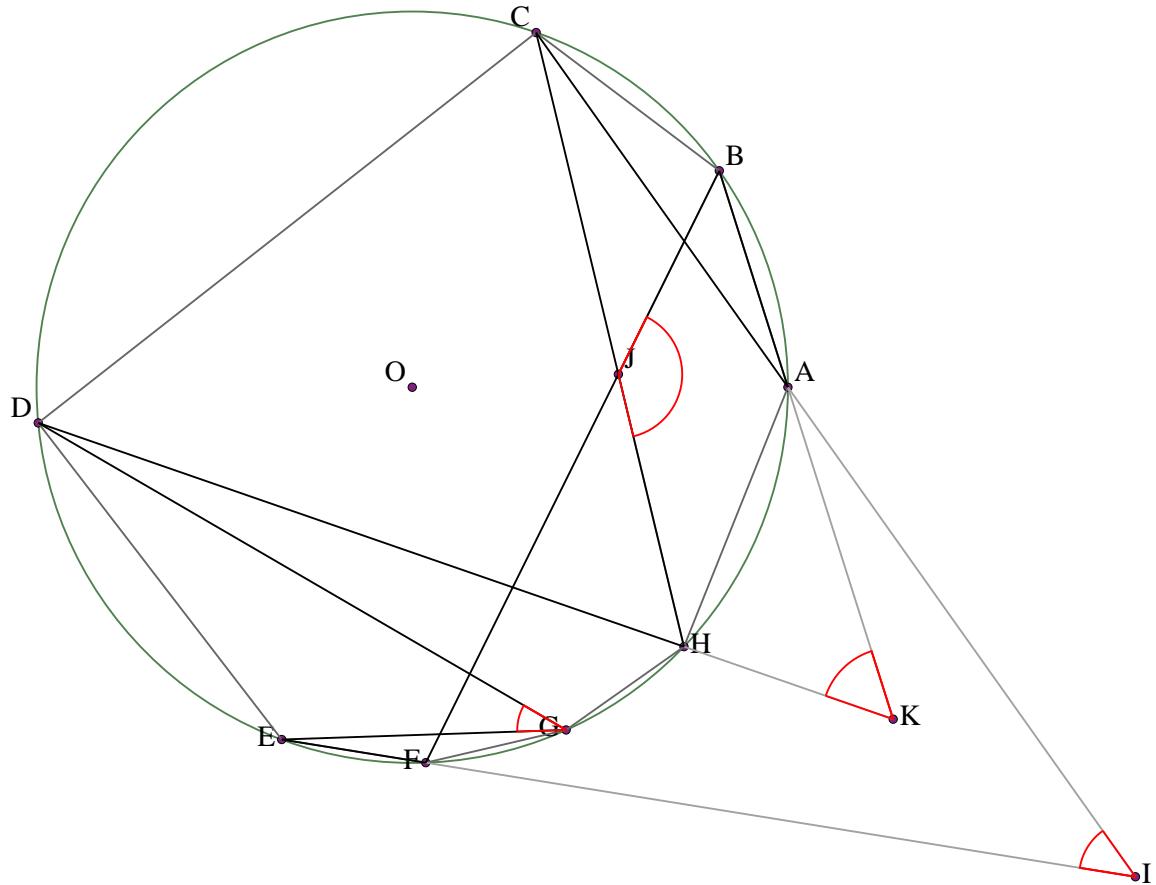


Let $ABCDEFG$ be a cyclic heptagon with center O . Let H be the intersection of OG and DF . Let I be the intersection of GC and FA . Let J be the intersection of CD and AE .

Angle $DJE = x$. Angle $EBG = y$. Angle $GHF = z$.

Find angle CIA .

Example 169

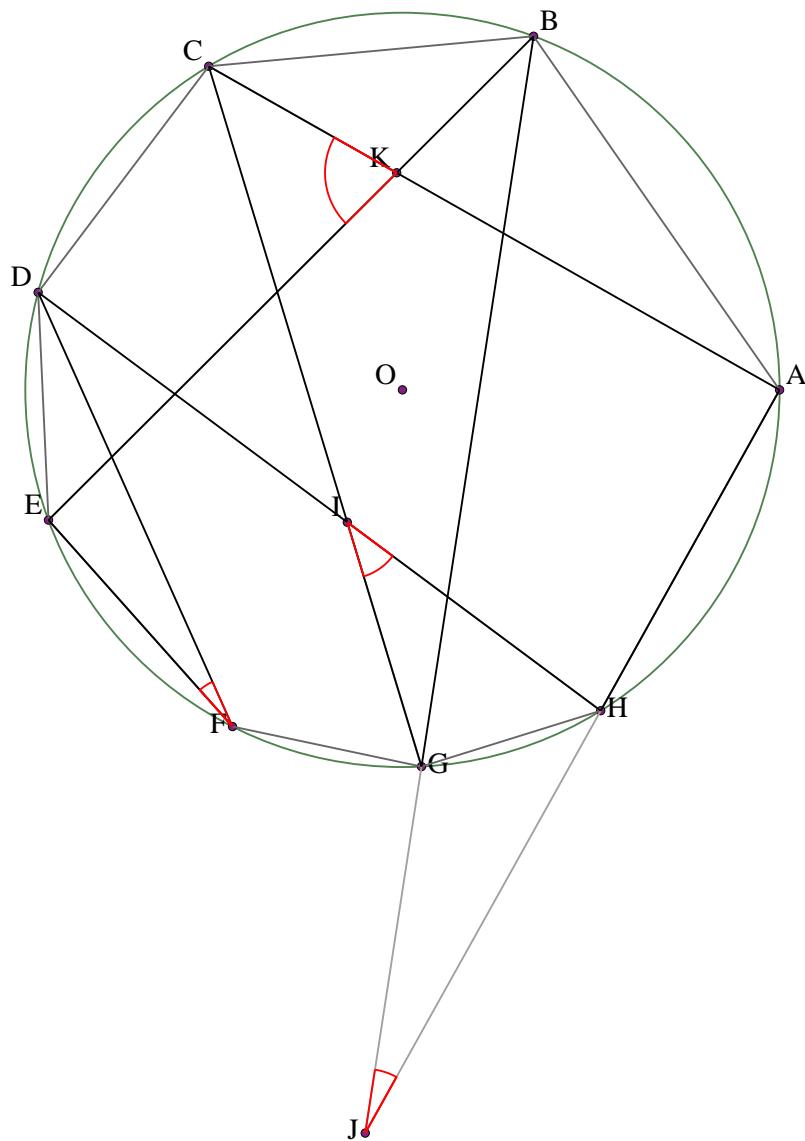


Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of EF and AC . Let J be the intersection of FB and CH . Let K be the intersection of BA and HD .

Angle $FIA = x$. Angle $DGE = y$. Angle $AKH = z$.

Find angle BJH .

Example 170

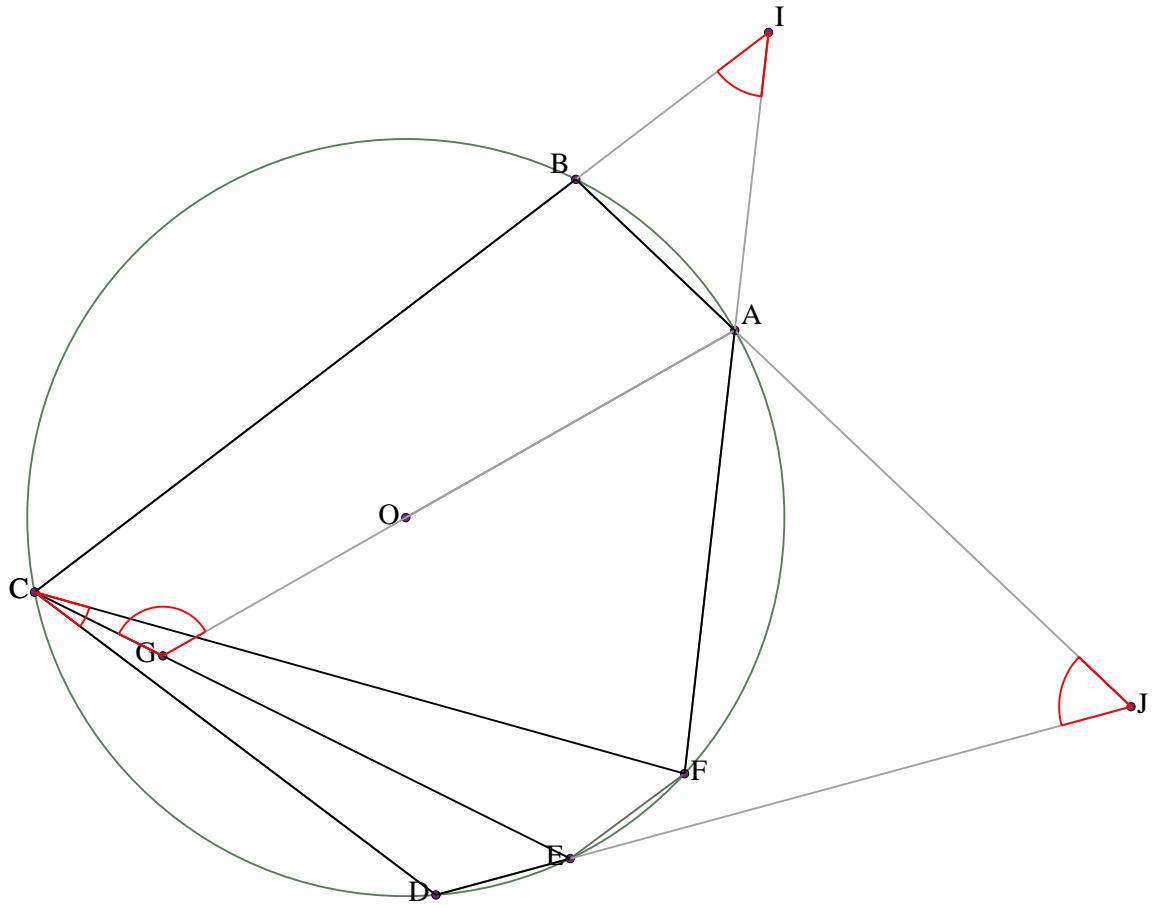


Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of DH and CG . Let J be the intersection of HA and GB . Let K be the intersection of AC and BE .

Angle $EFD = 18^\circ$. Angle $HIG = 36^\circ$. Angle $HJG = 20^\circ$.

Find angle CKE .

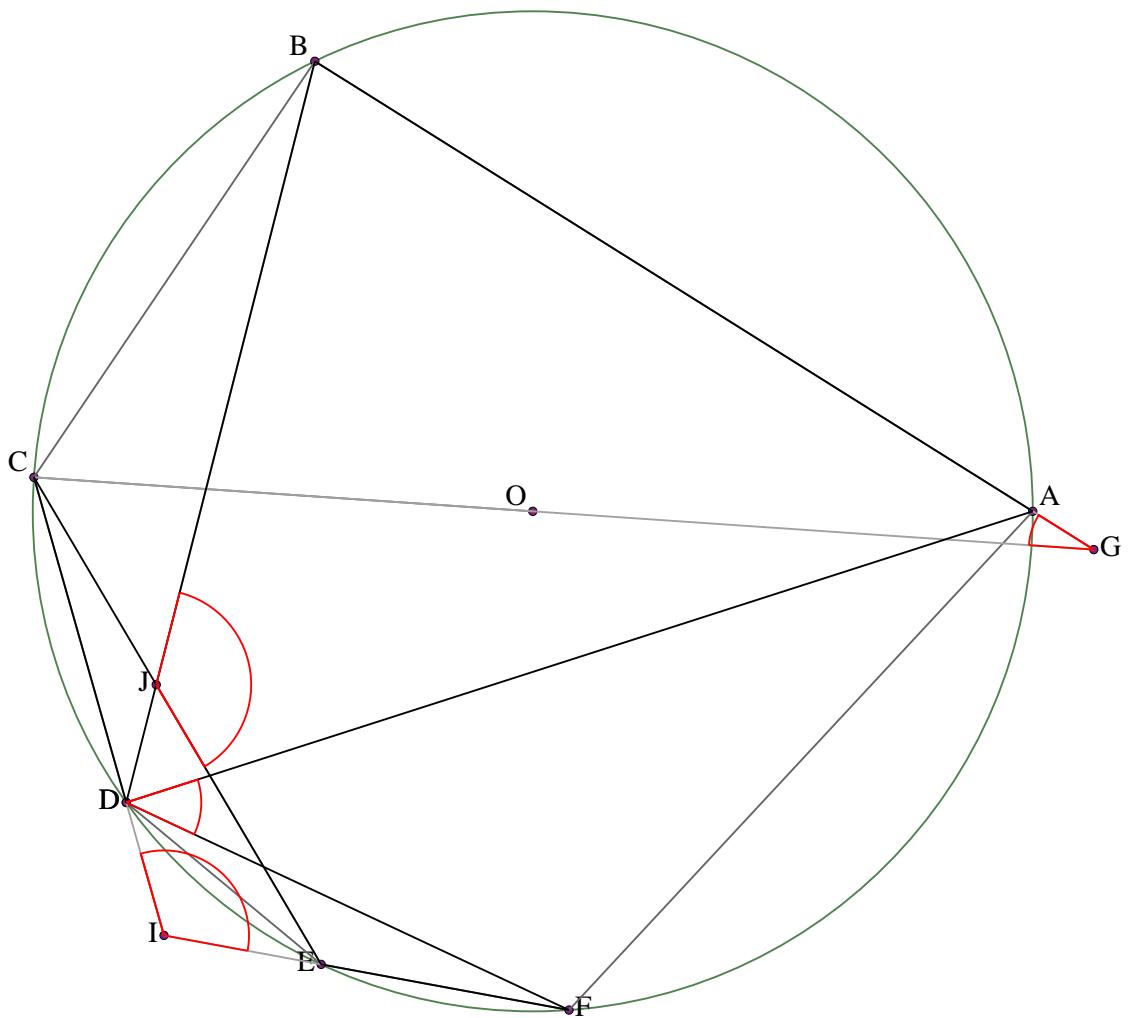
Example 171



Let $ABCDEF$ be a cyclic hexagon with center O . Let G be the intersection of EC and AO . Let I be the intersection of FA and BC . Let J be the intersection of AB and DE .

Prove that $AGC + AIB = DCF + AJE + 90^\circ$

Example 172

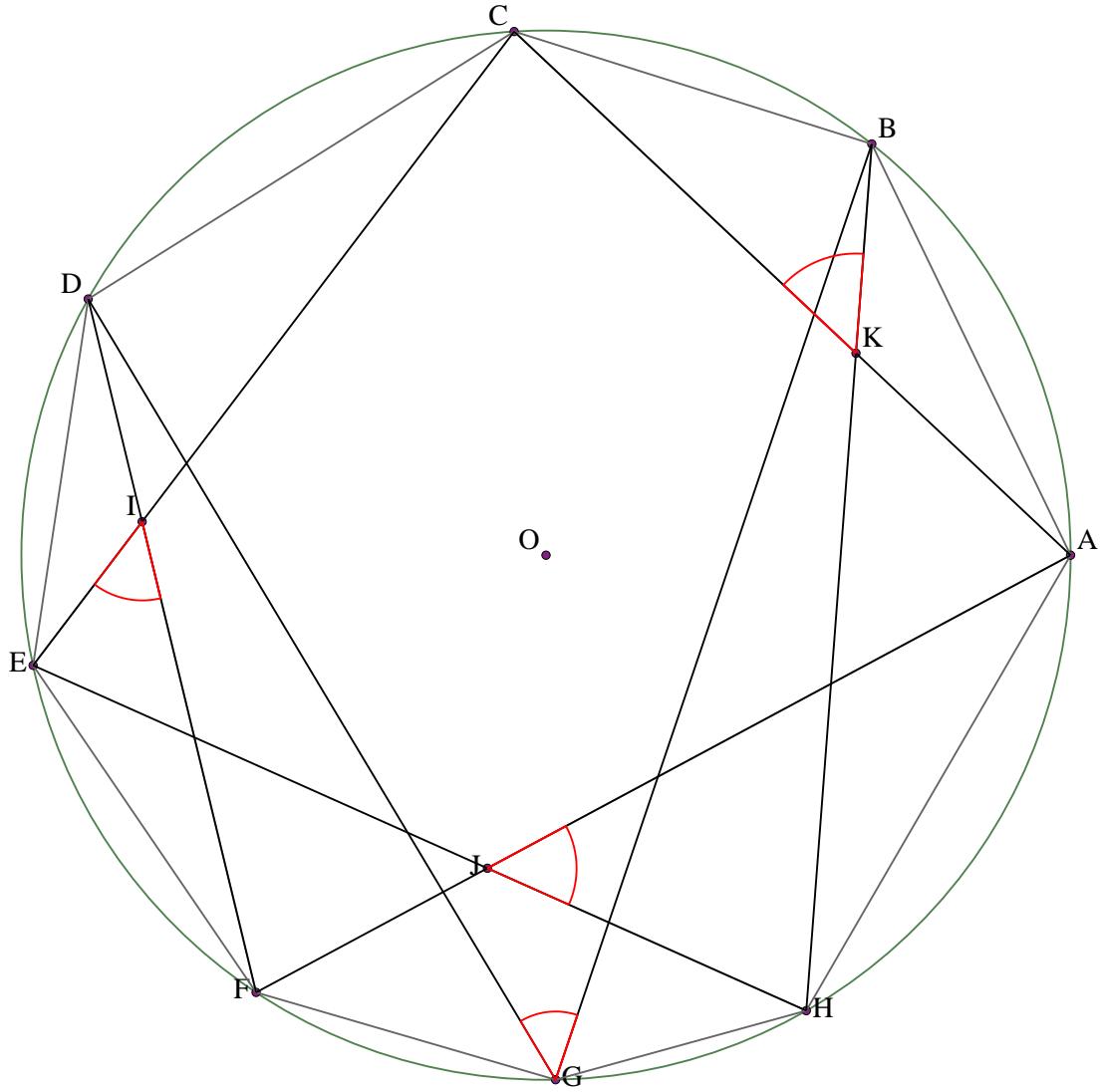


Let ABCDEF be a cyclic hexagon with center O. Let G be the intersection of BA and CO. Let I be the intersection of DC and EF. Let J be the intersection of CE and DB.

Angle DIE = x. Angle AGC = y. Angle ADF = z.

Find angle EJB.

Example 173

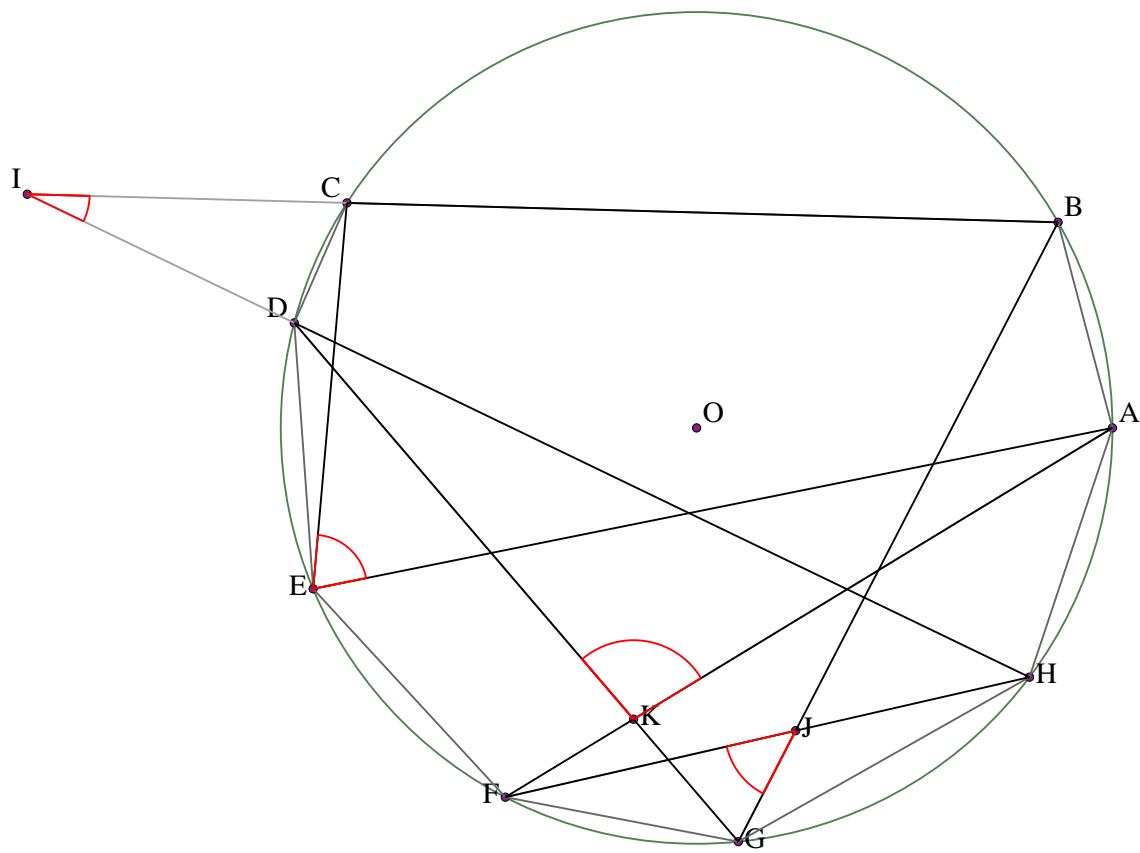


Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of DF and CE . Let J be the intersection of FA and EH . Let K be the intersection of AC and HB .

Angle $BGD = 50^\circ$. Angle $AJH = 52^\circ$. Angle $FIE = 51^\circ$.

Find angle CKB .

Example 174



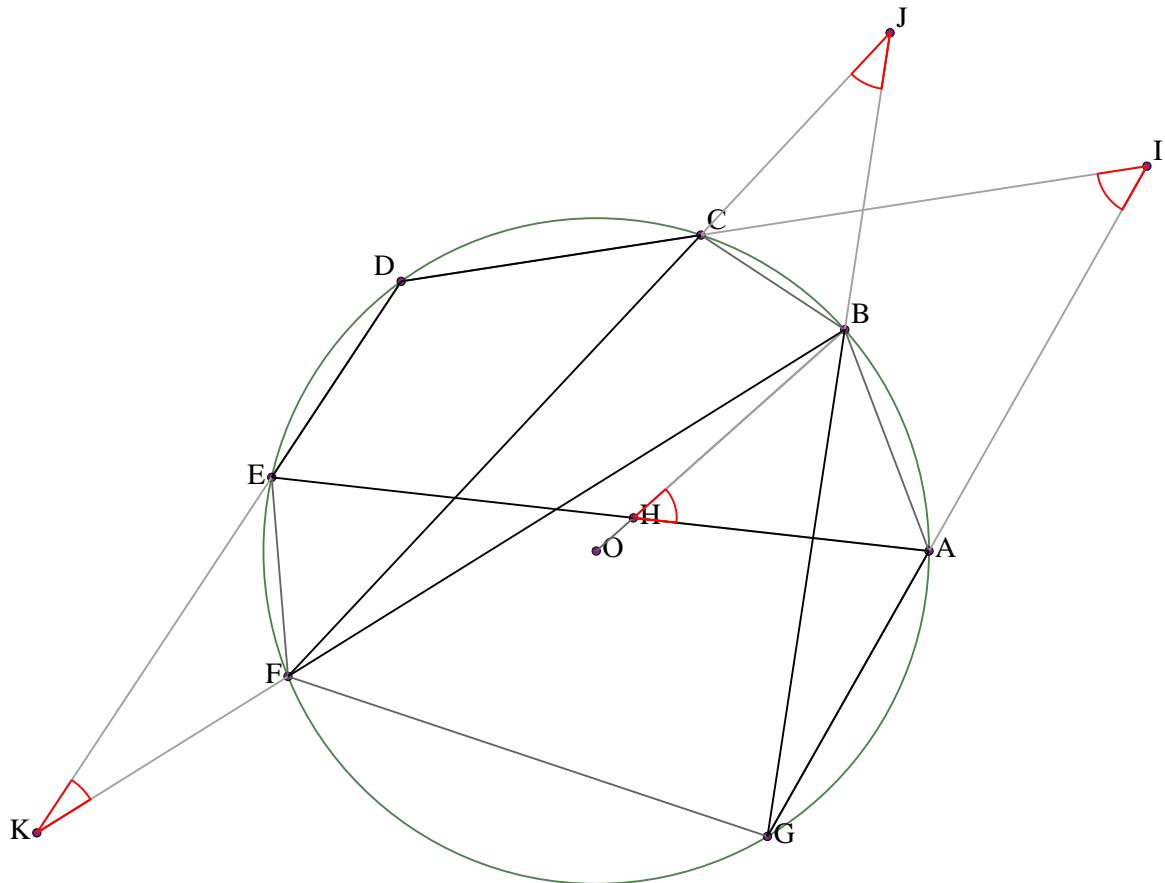
Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of CB and DH . Let J be the intersection of BG and HF . Let K be the intersection of GD and FA .

Angle CID = 24° . Angle DKA = 99° . Angle AEC = 74° .

Find angle GJF.

Find angle GFR :

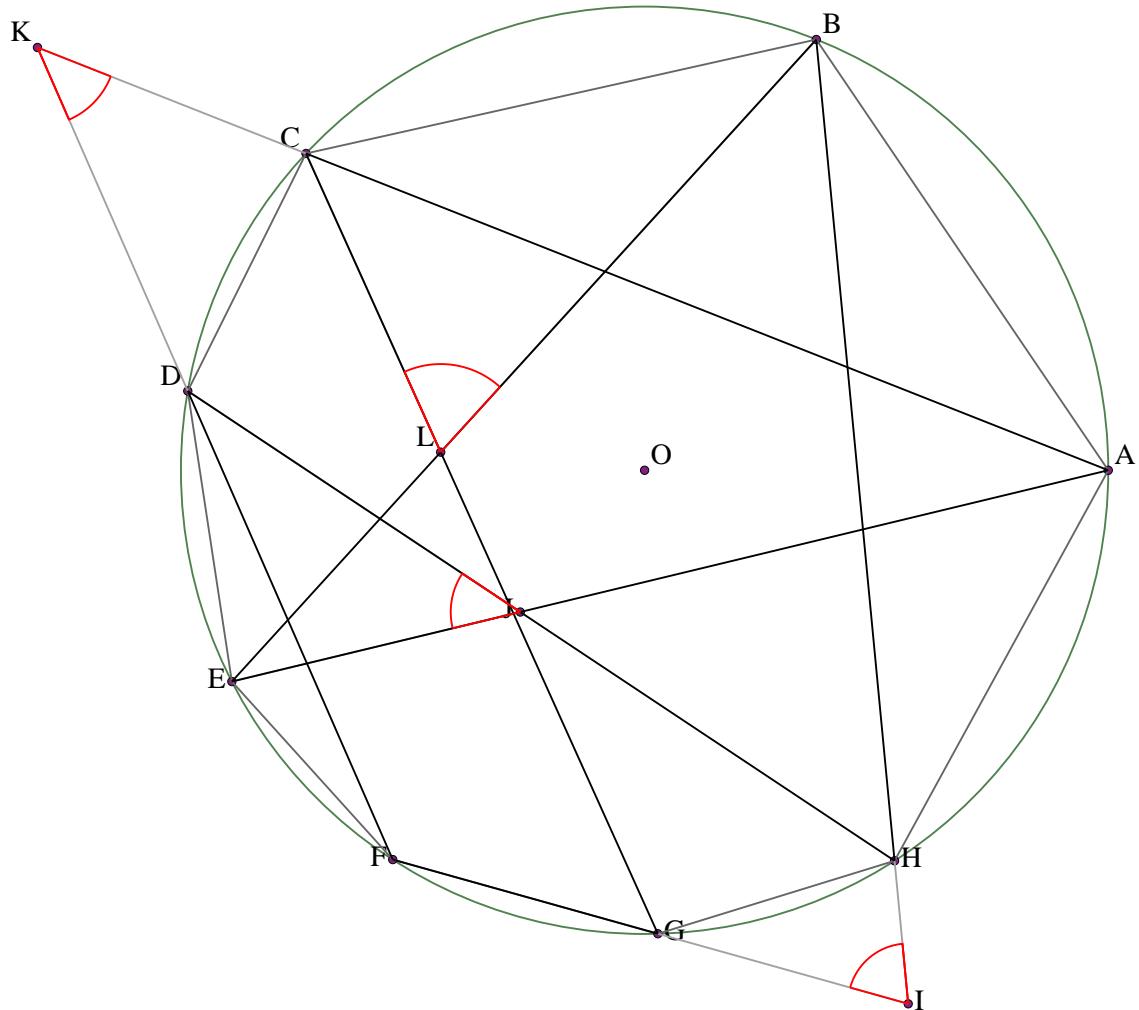
Example 175



Let $ABCDEFG$ be a cyclic heptagon with center O . Let H be the intersection of EA and BO . Let I be the intersection of AG and CD . Let J be the intersection of GB and FC . Let K be the intersection of BF and DE . Angle $AHB = 48^\circ$. Angle $AIC = 52^\circ$. Angle $FKE = 25^\circ$.

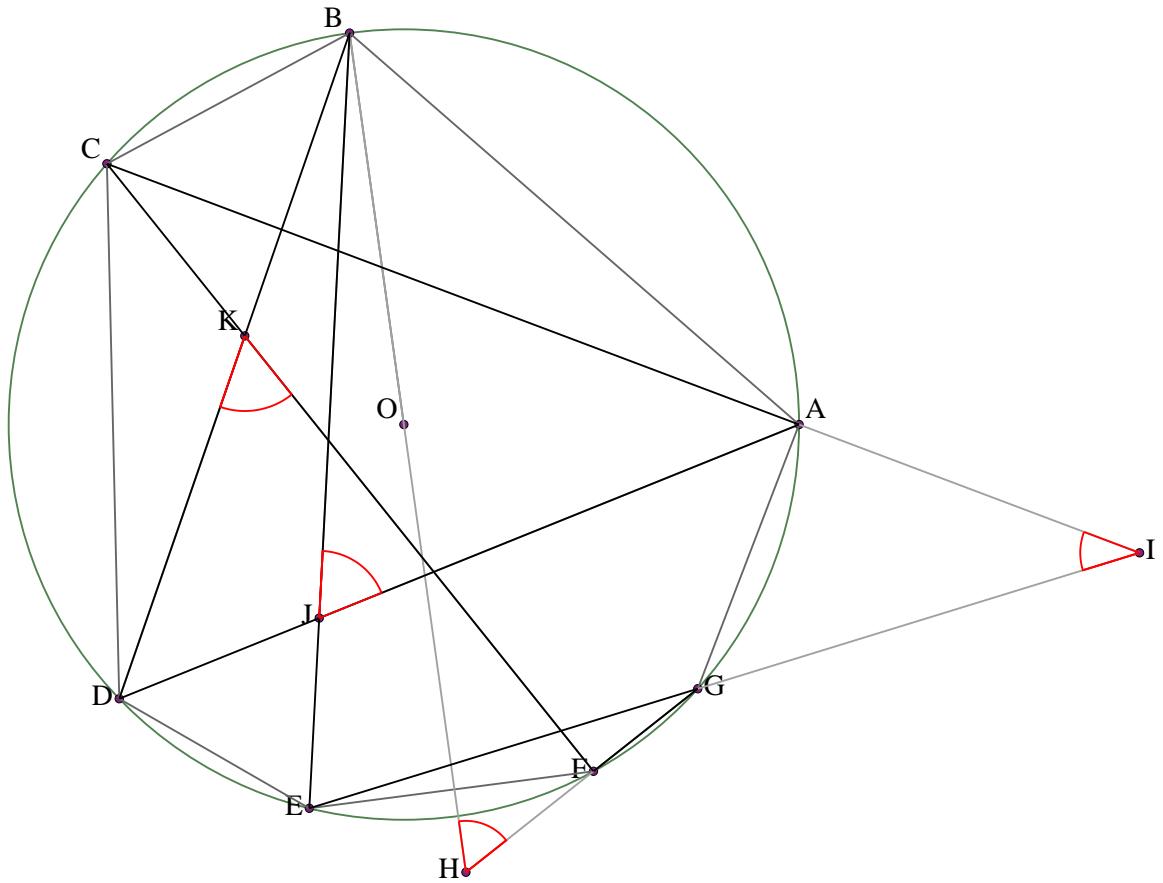
Find angle BJC .

Example 176



Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of BH and FG . Let J be the intersection of HD and AE . Let K be the intersection of DF and CA . Let L be the intersection of GC and EB . Angle $DJE = x$. Angle $CLB = y$. Angle $DKC = z$.
Find angle HIG .

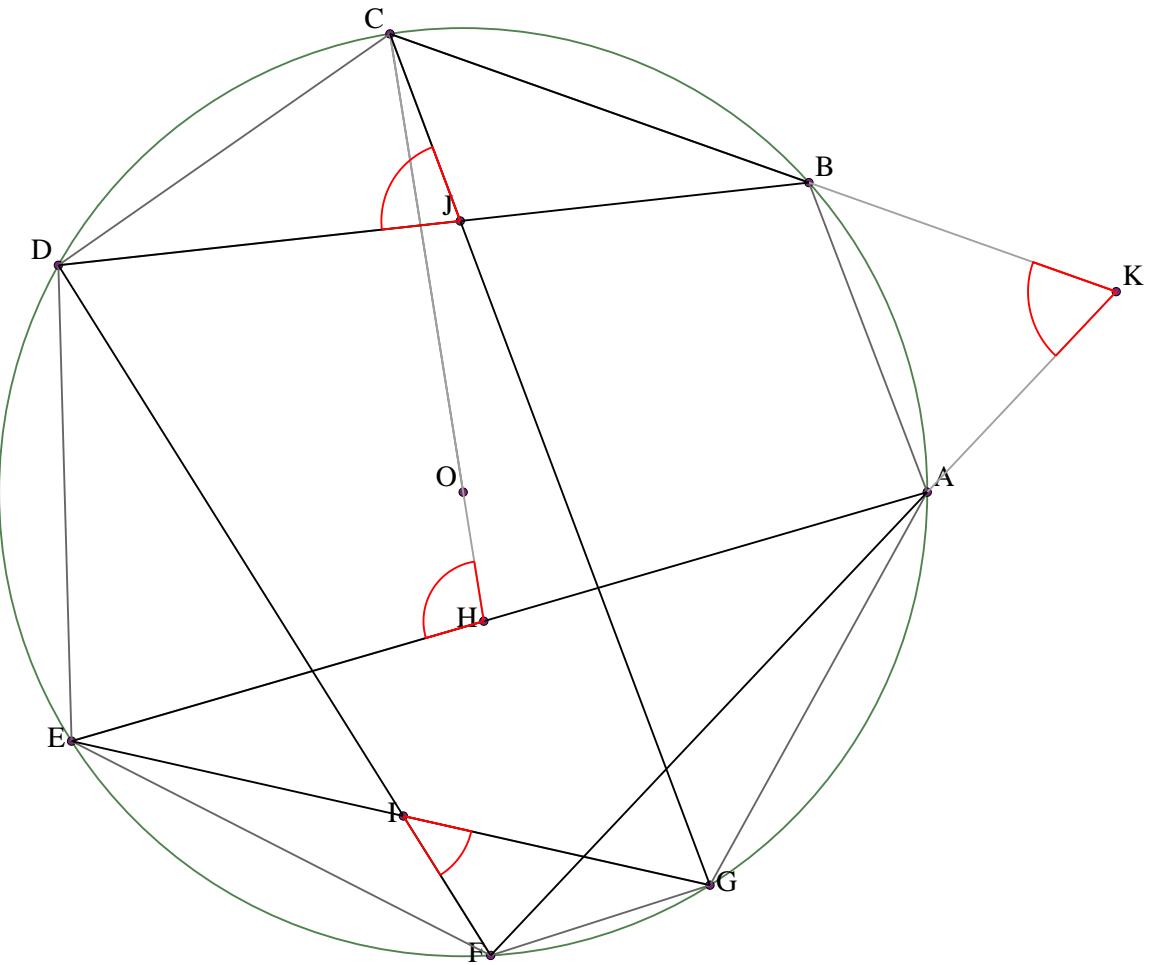
Example 177



Let $ABCDEFG$ be a cyclic heptagon with center O . Let H be the intersection of FG and BO . Let I be the intersection of GE and AC . Let J be the intersection of EB and DA . Let K be the intersection of BD and CF . Angle $FHB = 60^\circ$. Angle $GIA = 38^\circ$. Angle $DKF = 58^\circ$.

Find angle BJA .

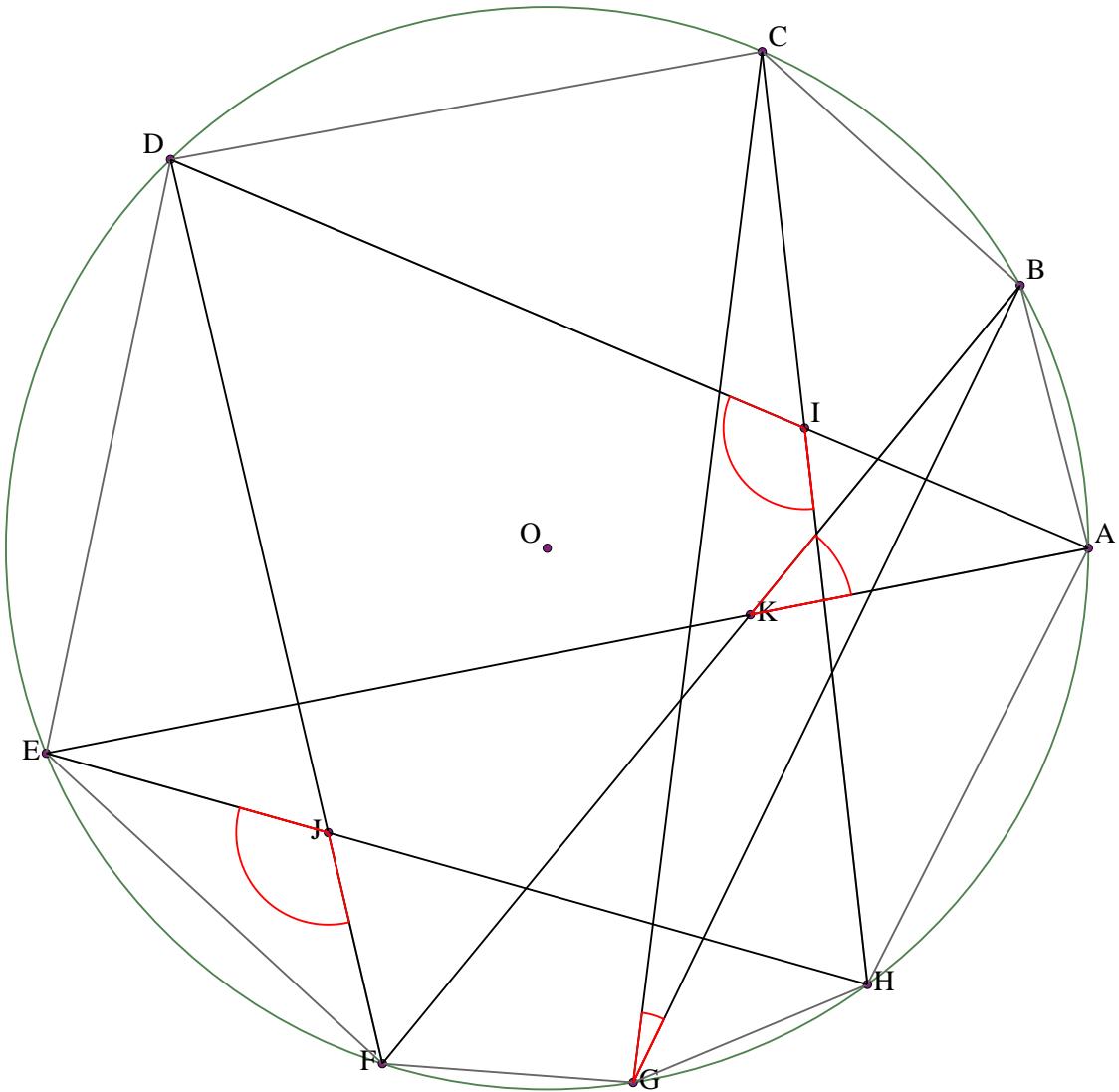
Example 178



Let $ABCDEFG$ be a cyclic heptagon with center O . Let H be the intersection of AE and CO . Let I be the intersection of EG and DF . Let J be the intersection of GC and BD . Let K be the intersection of CB and FA . Angle $EHC = 97^\circ$. Angle $GIF = 45^\circ$. Angle $CJD = 76^\circ$.

Find angle BKA .

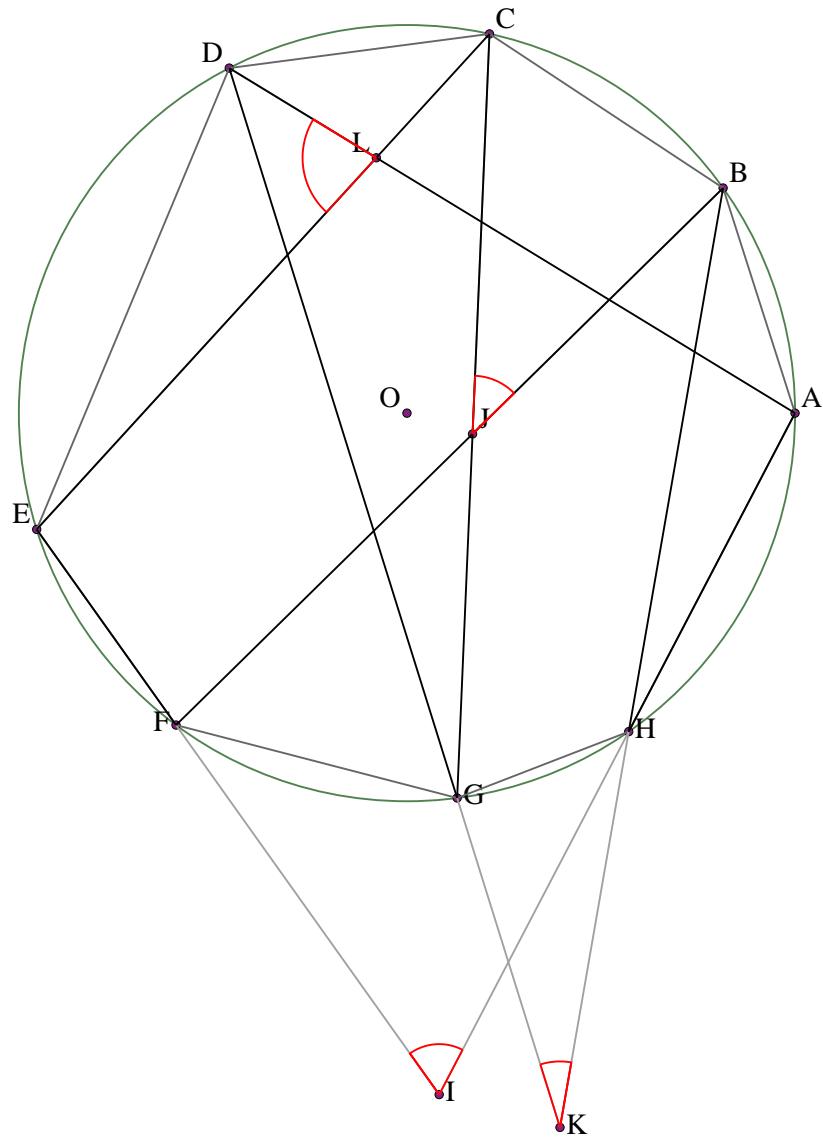
Example 179



Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of CH and AD . Let J be the intersection of HE and DF . Let K be the intersection of EA and FB .

Prove that $\angle DIH + \angle EJF = \angle BGC + \angle AKB + 180^\circ$

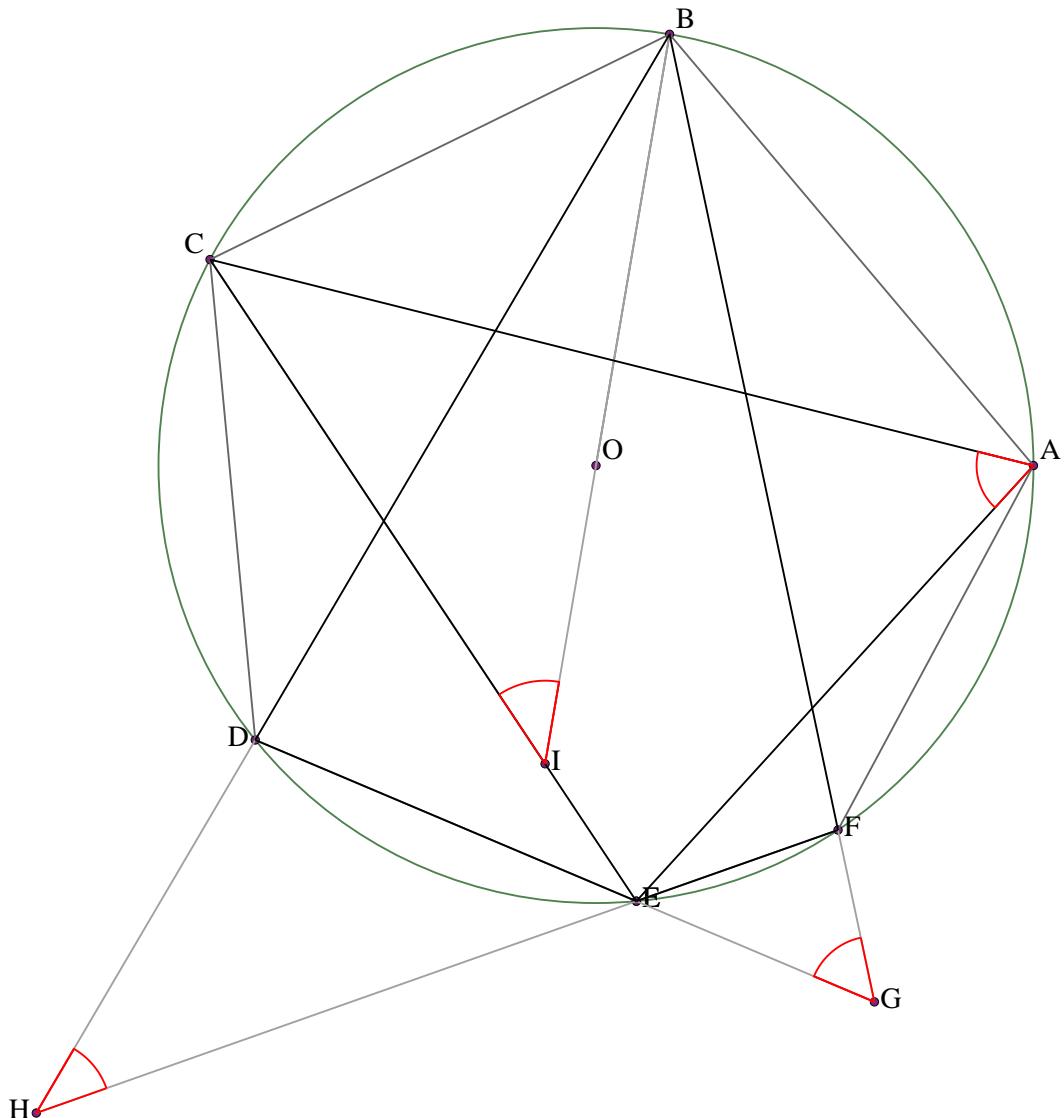
Example 180



Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of EF and HA . Let J be the intersection of FB and GC . Let K be the intersection of BH and DG . Let L be the intersection of AD and CE . Angle $HKG = 27^\circ$. Angle $DLE = 79^\circ$. Angle $FIH = 63^\circ$.

Find angle BJC .

Example 181

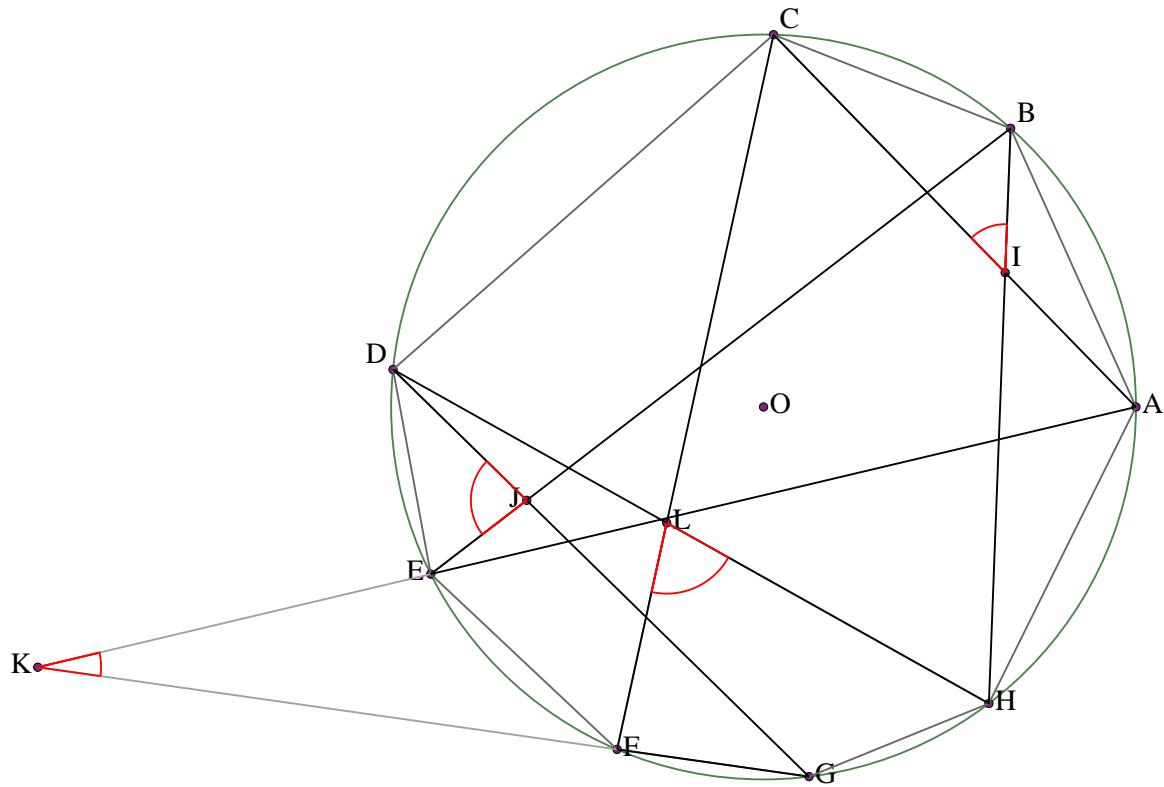


Let $ABCDEF$ be a cyclic hexagon with center O . Let G be the intersection of ED and BF . Let H be the intersection of DB and FE . Let I be the intersection of OB and EC .

Angle $EGF = 55^\circ$. Angle $CAE = 62^\circ$. Angle $DHE = 40^\circ$.

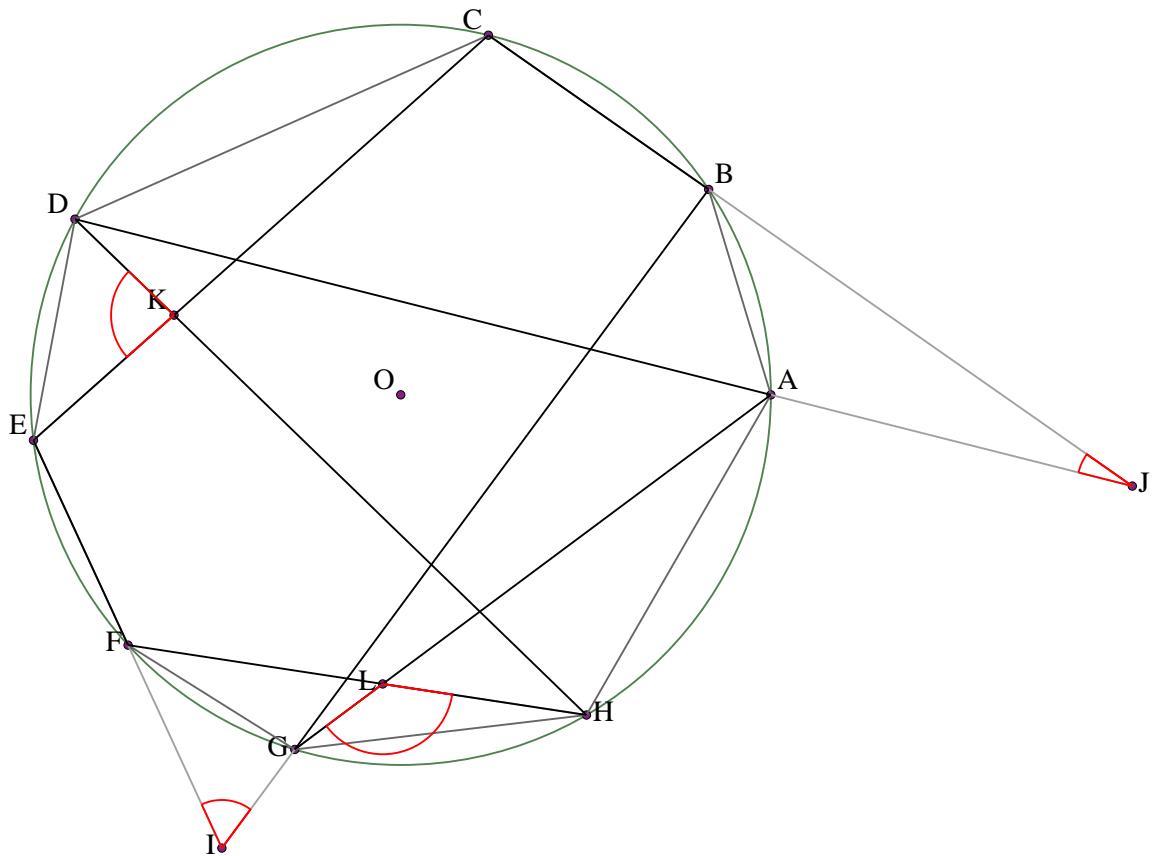
Find angle BIC .

Example 182



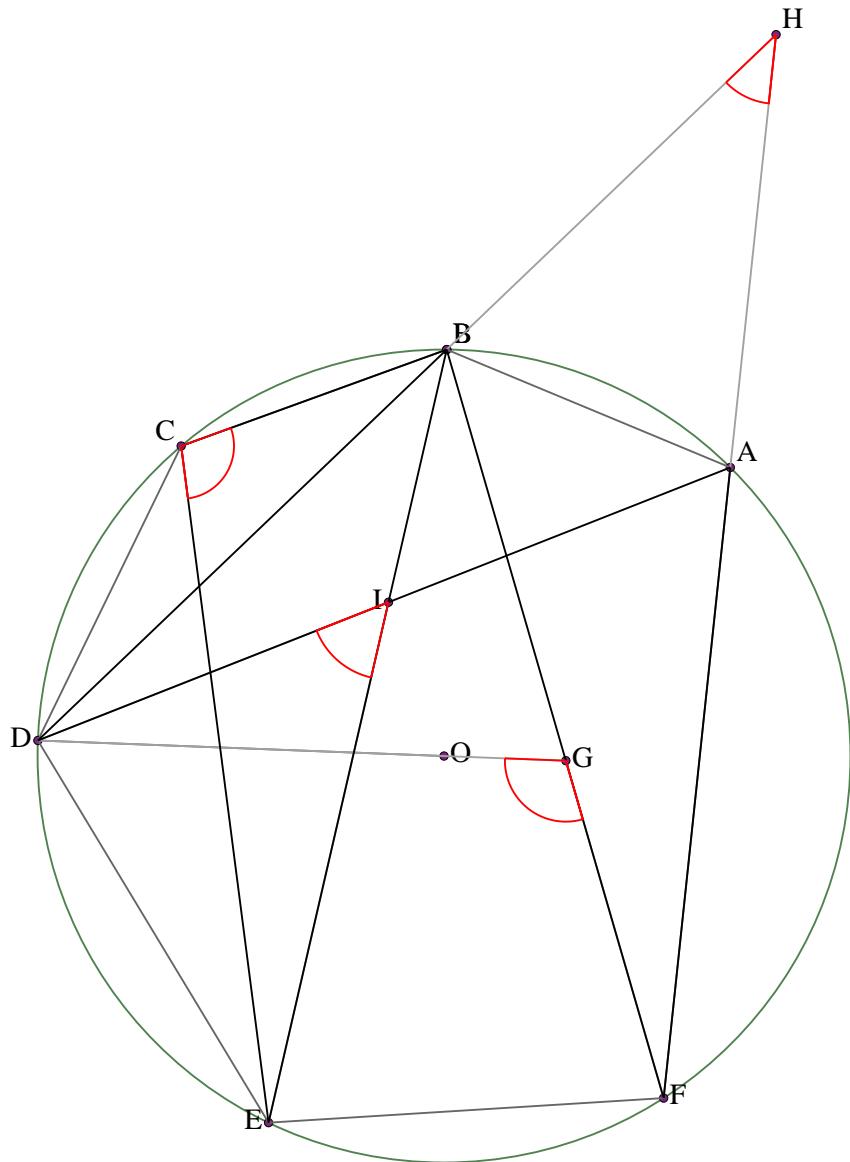
Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of HB and AC . Let J be the intersection of BE and GD . Let K be the intersection of EA and FG . Let L be the intersection of CF and DH . Angle $EKF = x$. Angle $BIC = y$. Angle $EJD = z$. Find angle FLH .

Example 183



Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of GB and EF . Let J be the intersection of BC and DA . Let K be the intersection of CE and HD . Let L be the intersection of FH and AG .
 Angle $GIF = 61^\circ$. Angle $EKD = 86^\circ$. Angle $HLG = 135^\circ$.
 Find angle BJA .

Example 184

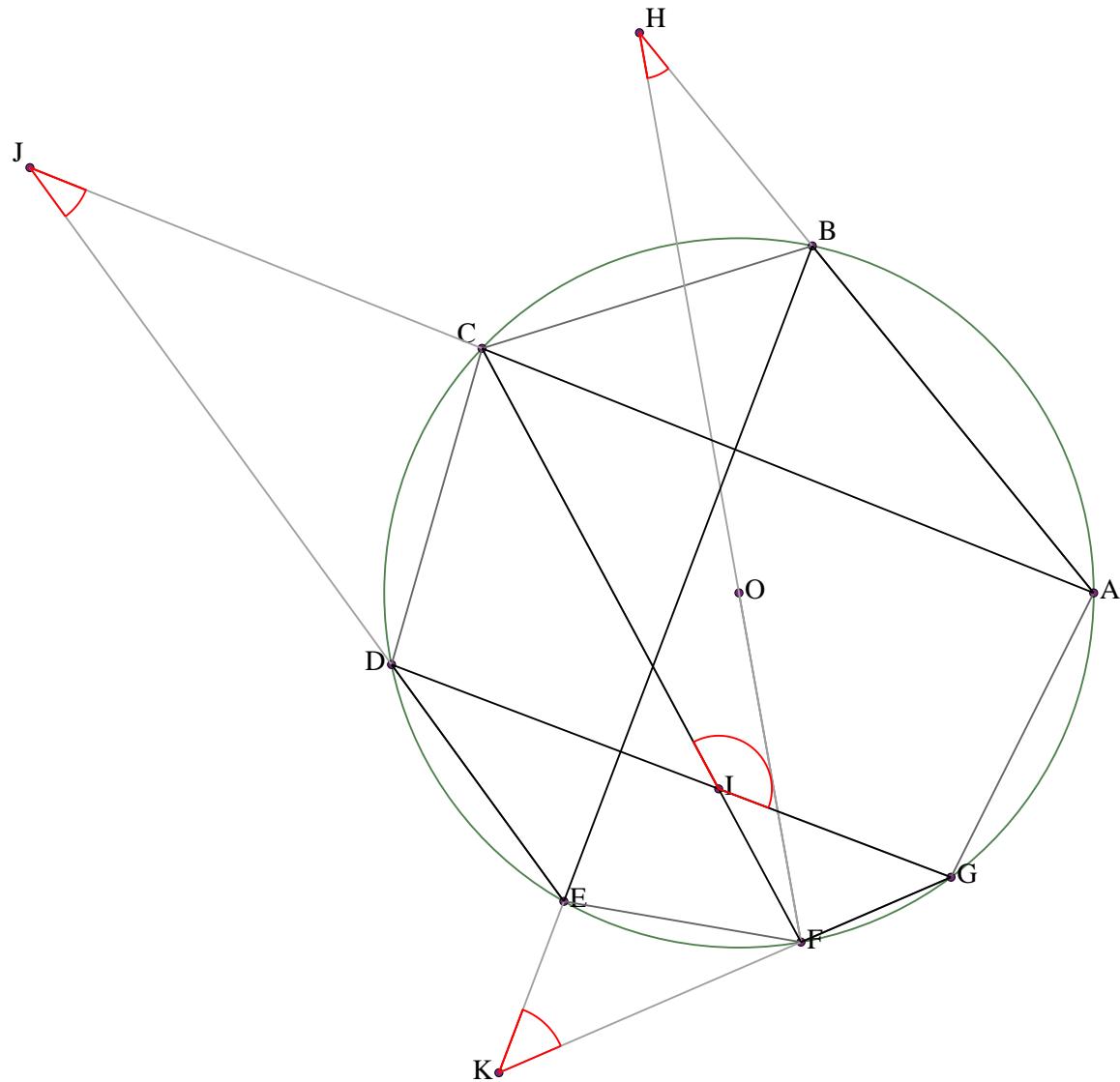


Let $ABCDEF$ be a cyclic hexagon with center O . Let G be the intersection of BF and DO . Let H be the intersection of FA and DB . Let I be the intersection of AD and BE .

Angle $FGD = 108^\circ$. Angle $ECB = 103^\circ$. Angle $DIE = 56^\circ$.

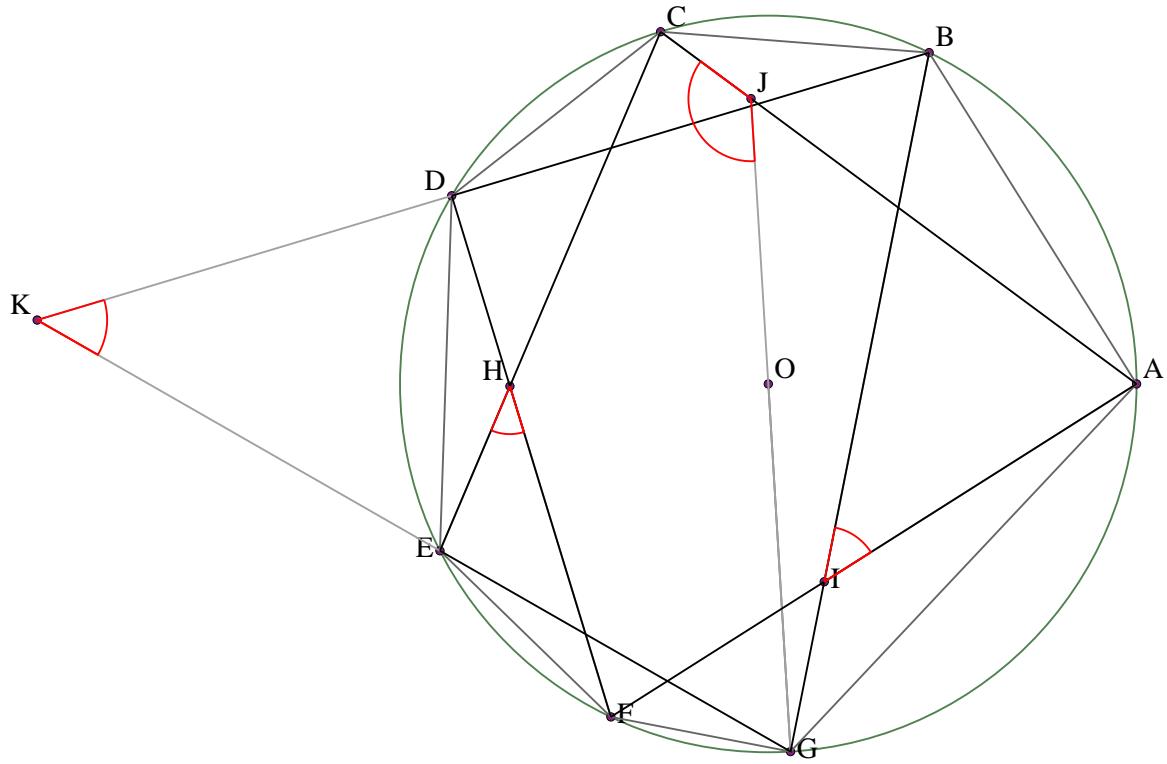
Find angle AHB .

Example 185



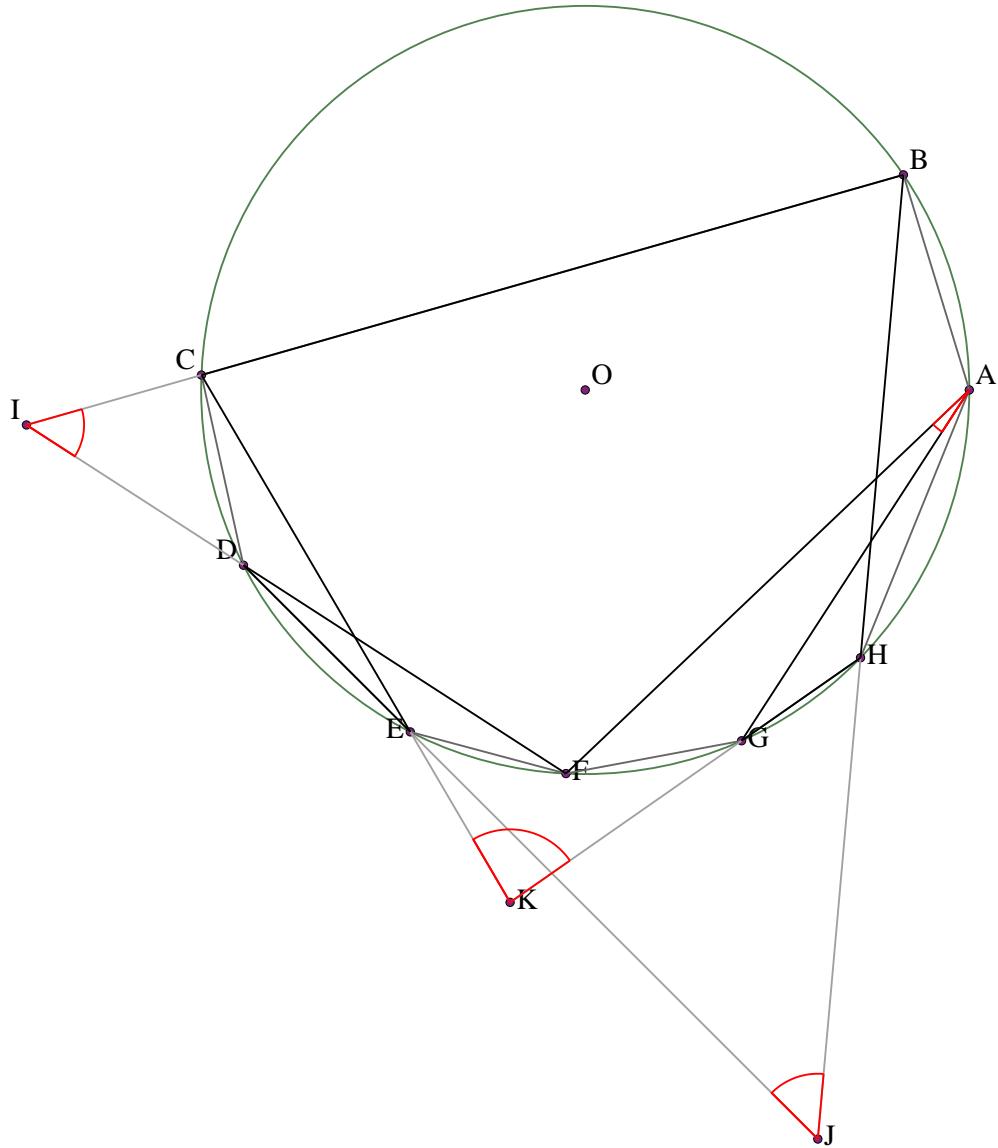
Let $ABCDEFG$ be a cyclic heptagon with center O . Let H be the intersection of OF and AB . Let I be the intersection of FC and DG . Let J be the intersection of CA and ED . Let K be the intersection of BE and GF . Prove that $BHF + CIG = CJD + EKF + 90^\circ$

Example 186



Let $ABCDEFG$ be a cyclic heptagon with center O . Let H be the intersection of DF and CE . Let I be the intersection of FA and GB . Let J be the intersection of AC and GO . Let K be the intersection of EG and BD . Prove that $CJG + DKE = EHF + AIB + 90^\circ$

Example 187

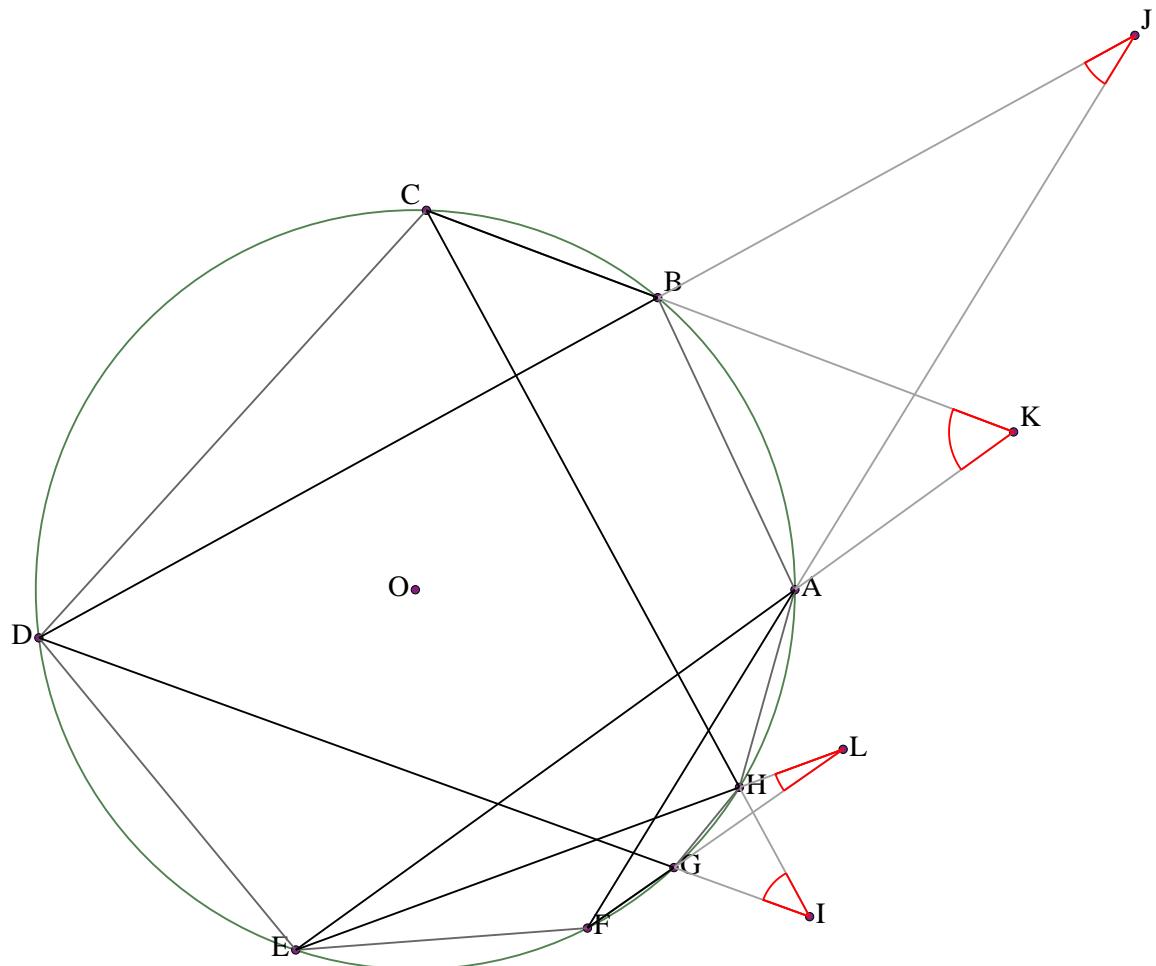


Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of FD and CB . Let J be the intersection of DE and BH . Let K be the intersection of EC and HG .

Angle $GAF = x$. Angle $EKG = y$. Angle $DIC = z$.

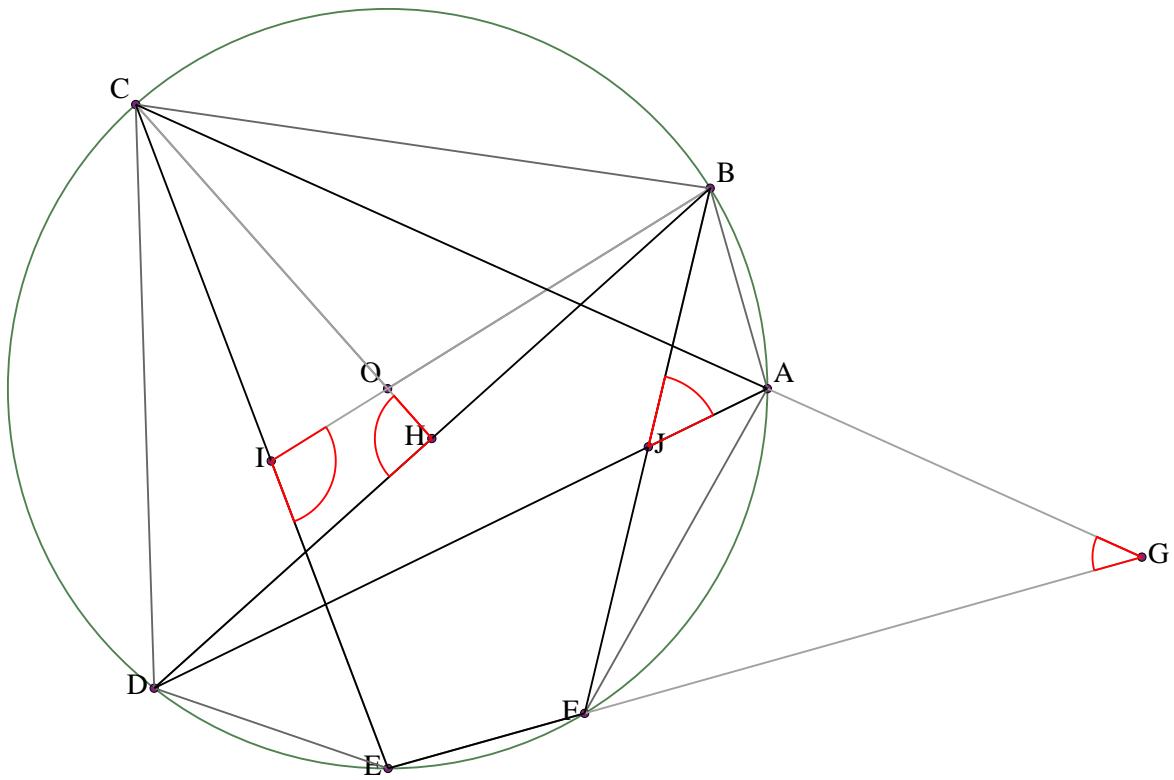
Find angle EJH .

Example 188



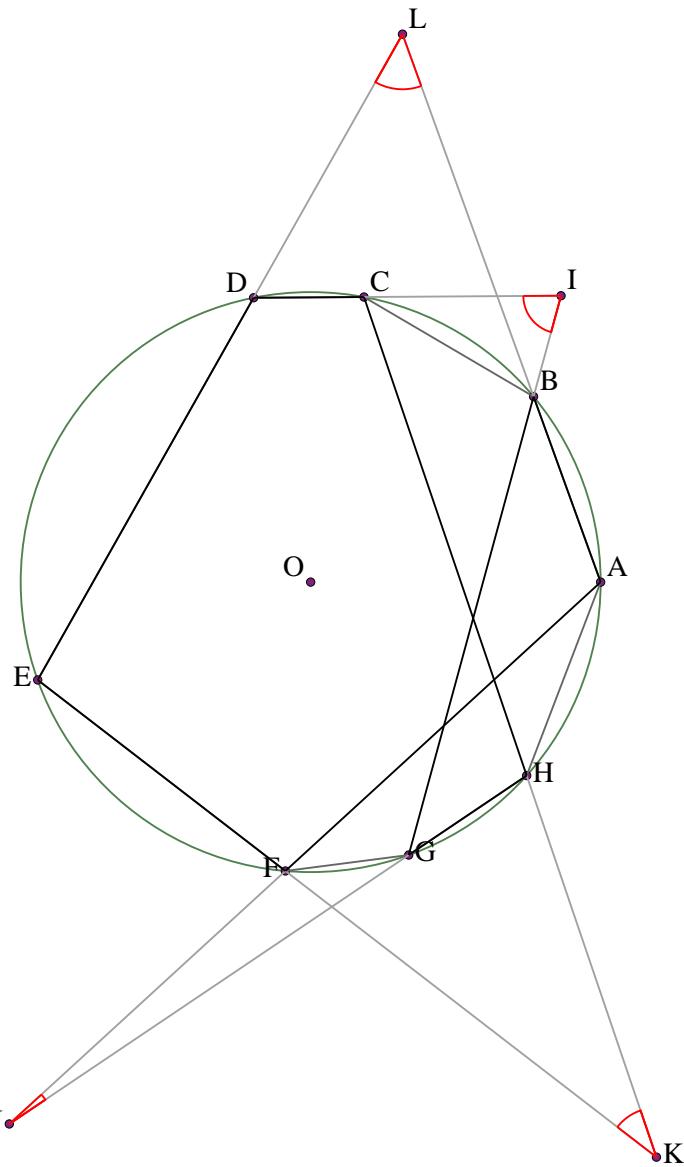
Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of GD and CH . Let J be the intersection of DB and AF . Let K be the intersection of BC and EA . Let L be the intersection of HE and FG . Angle $GIH = x$. Angle $BJA = y$. Angle $BKA = z$. Find angle HLG .

Example 189



Let ABCDEF be a cyclic hexagon with center O. Let G be the intersection of AC and EF. Let H be the intersection of OC and BD. Let I be the intersection of CE and BO. Let J be the intersection of FB and DA. Angle AGF = x. Angle EIB = y. Angle BJA = z. Find angle CHD.

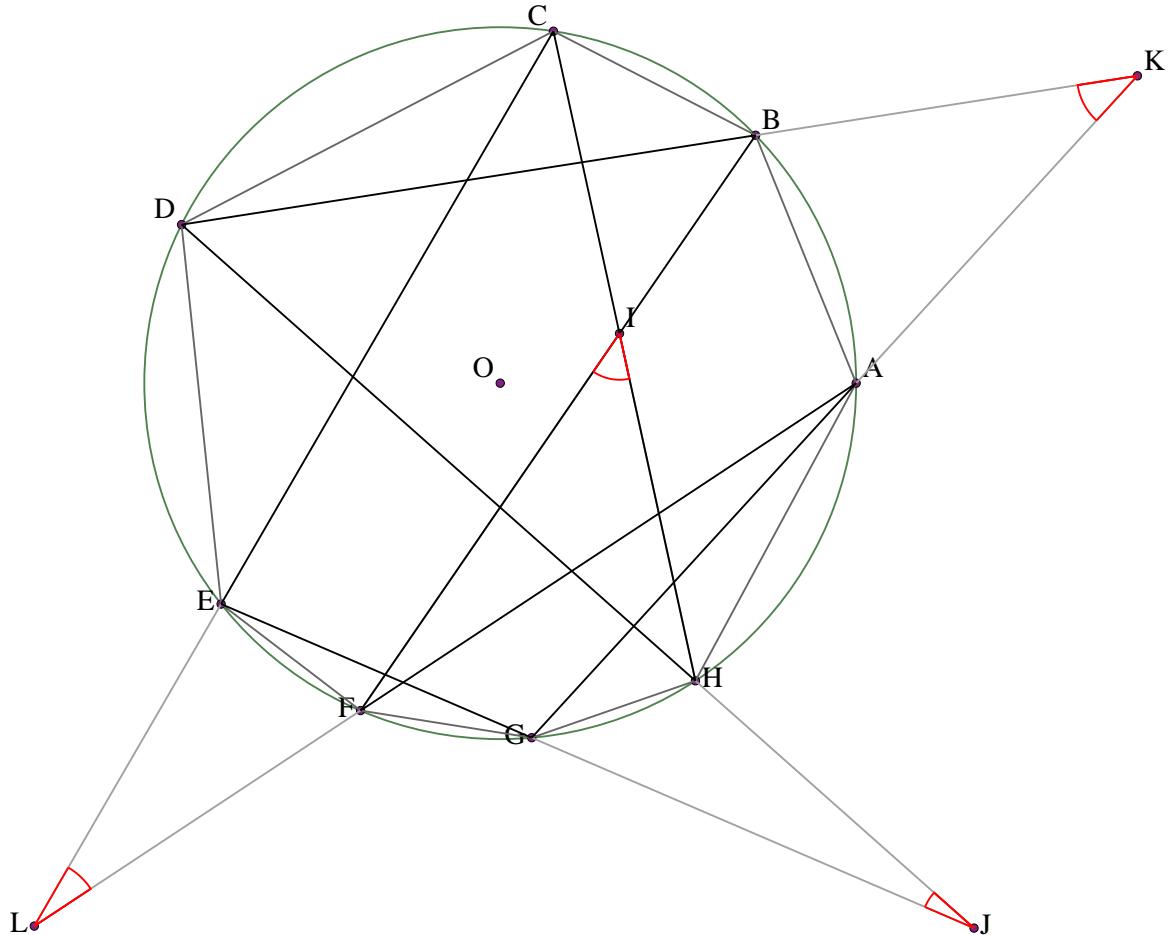
Example 190



Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of BG and CD . Let J be the intersection of GH and FA . Let K be the intersection of HC and EF . Let L be the intersection of DE and AB . Angle $HKF = 34^\circ$. Angle $DLB = 49^\circ$. Angle $BIC = 74^\circ$.

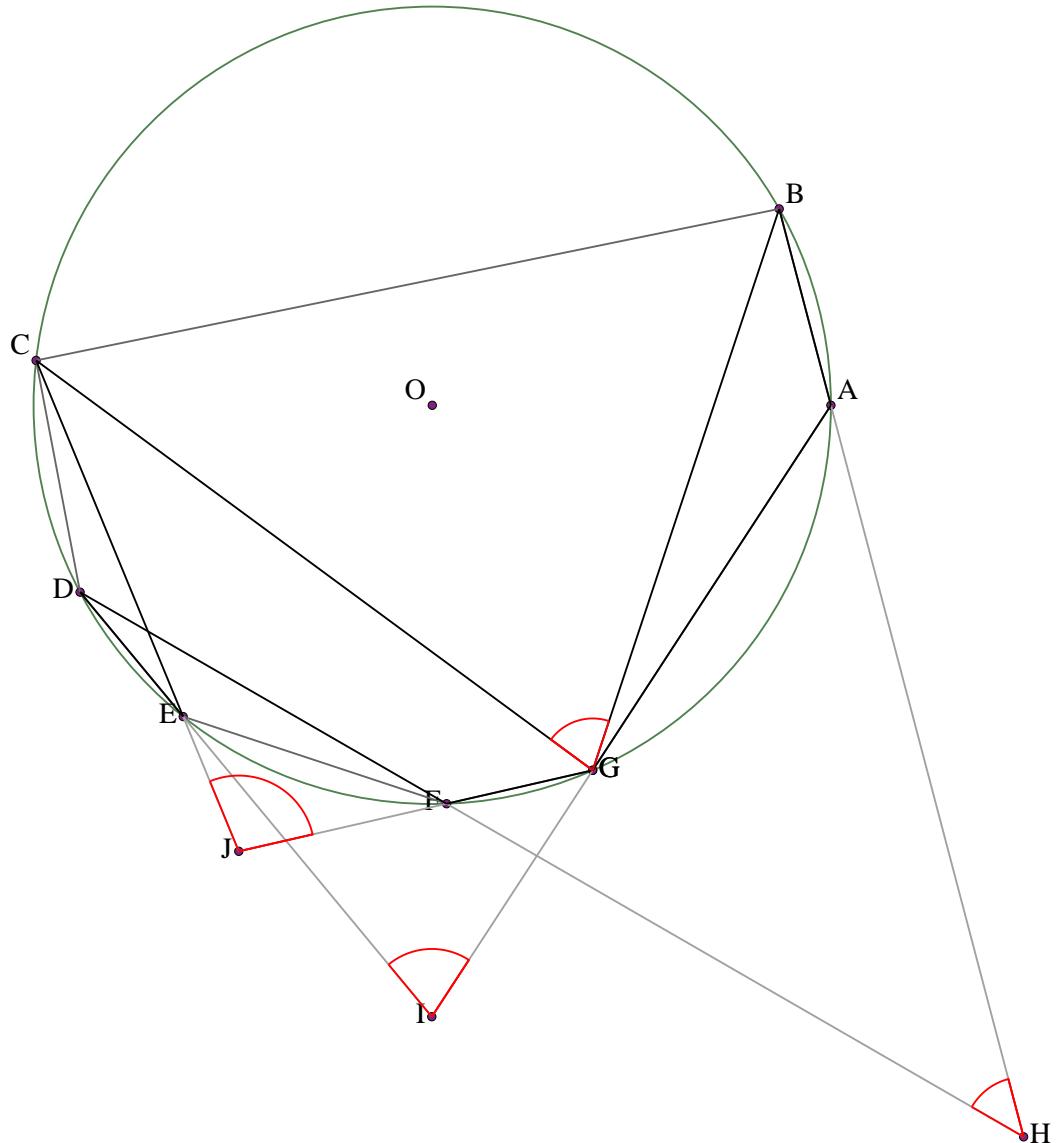
Find angle GJF .

Example 191



Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of CH and BF . Let J be the intersection of HD and GE . Let K be the intersection of DB and AG . Let L be the intersection of FA and EC .
 Angle $HIF = x$. Angle $HJG = y$. Angle $BKA = z$.
 Find angle FLE .

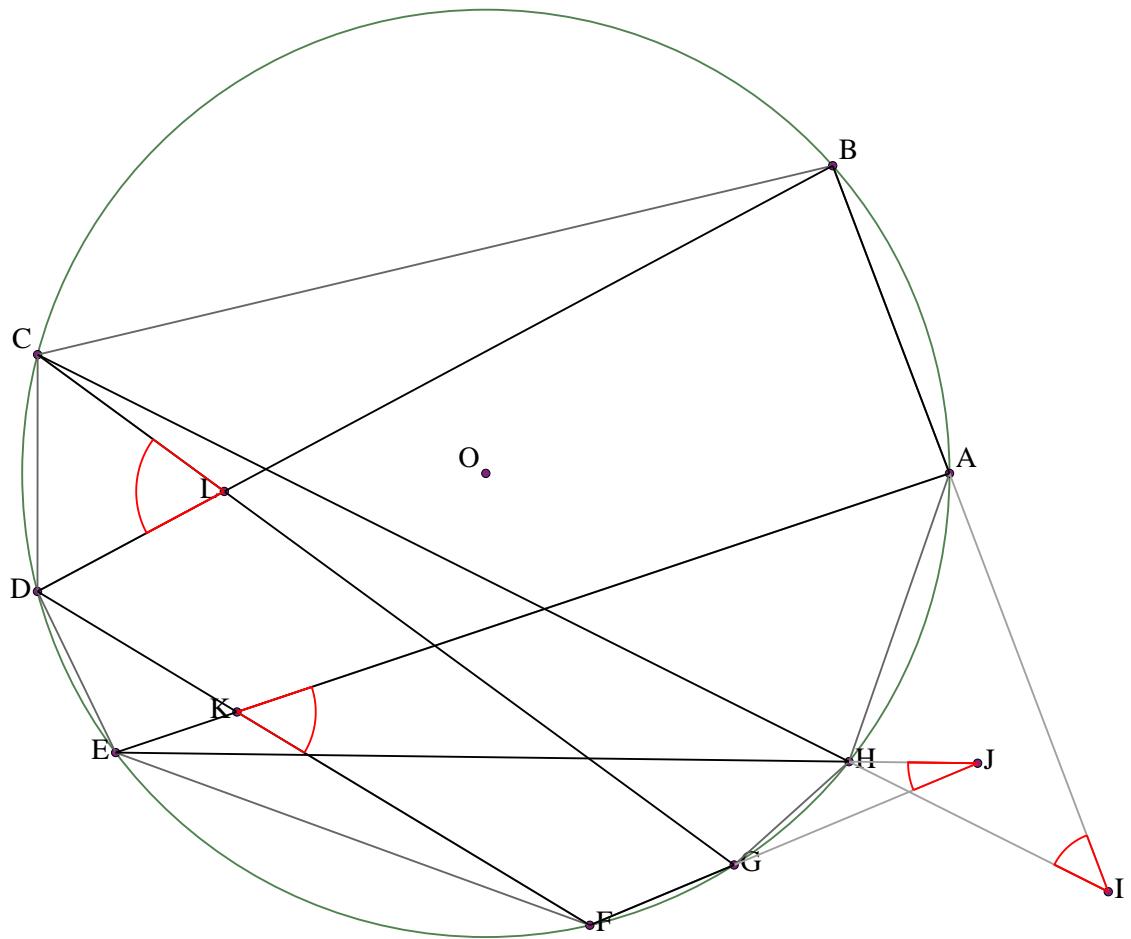
Example 192



Let $ABCDEFG$ be a cyclic heptagon with center O . Let H be the intersection of BA and FD . Let I be the intersection of AG and DE . Let J be the intersection of GF and EC .

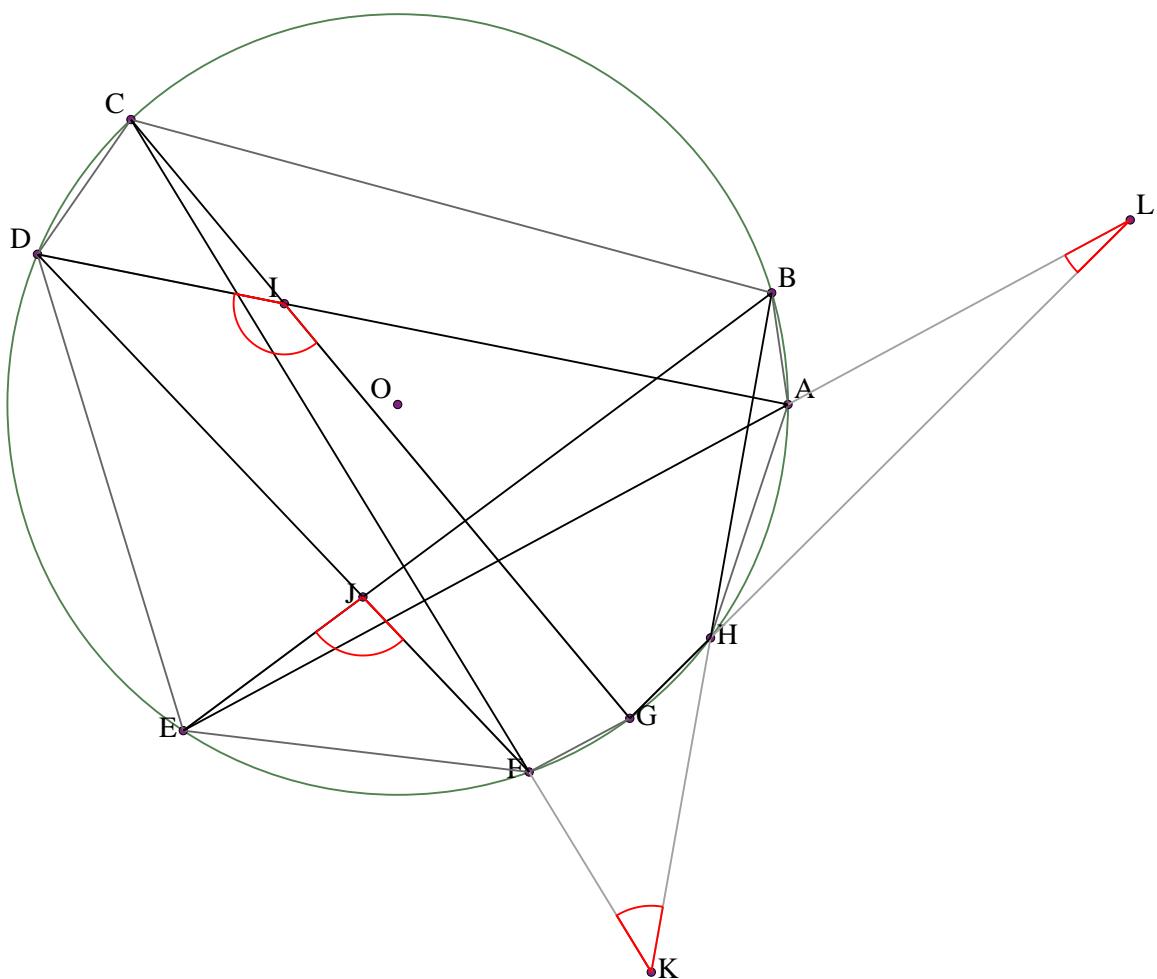
Prove that $BGC+EIG = AHF+EJF$

Example 193



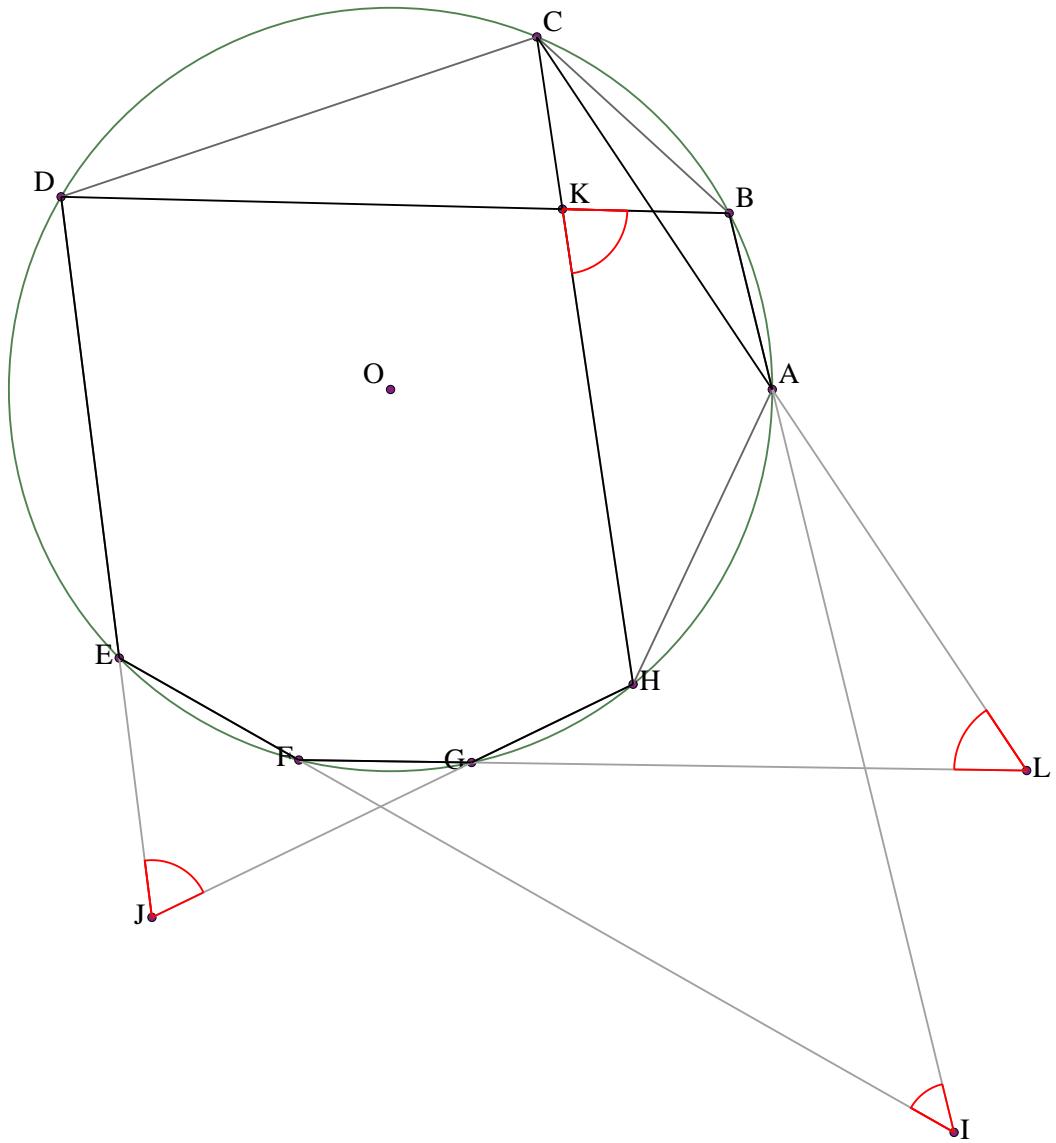
Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of CH and AB . Let J be the intersection of HE and FG . Let K be the intersection of EA and DF . Let L be the intersection of BD and GC . Prove that $AIH + GJH + AKF + CLD = 180$

Example 194



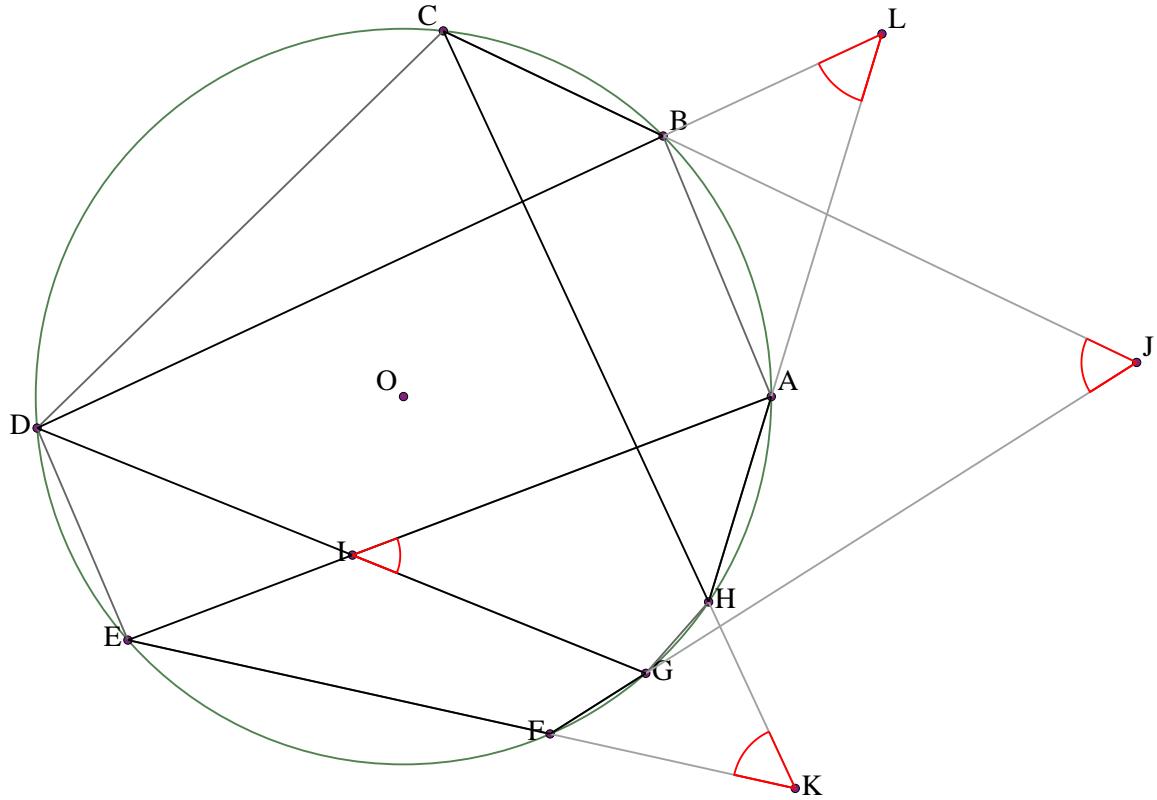
Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of AD and CG . Let J be the intersection of DF and BE . Let K be the intersection of FC and HB . Let L be the intersection of GH and EA . Prove that $DIG+EJF = FKH+ALH+180$

Example 195



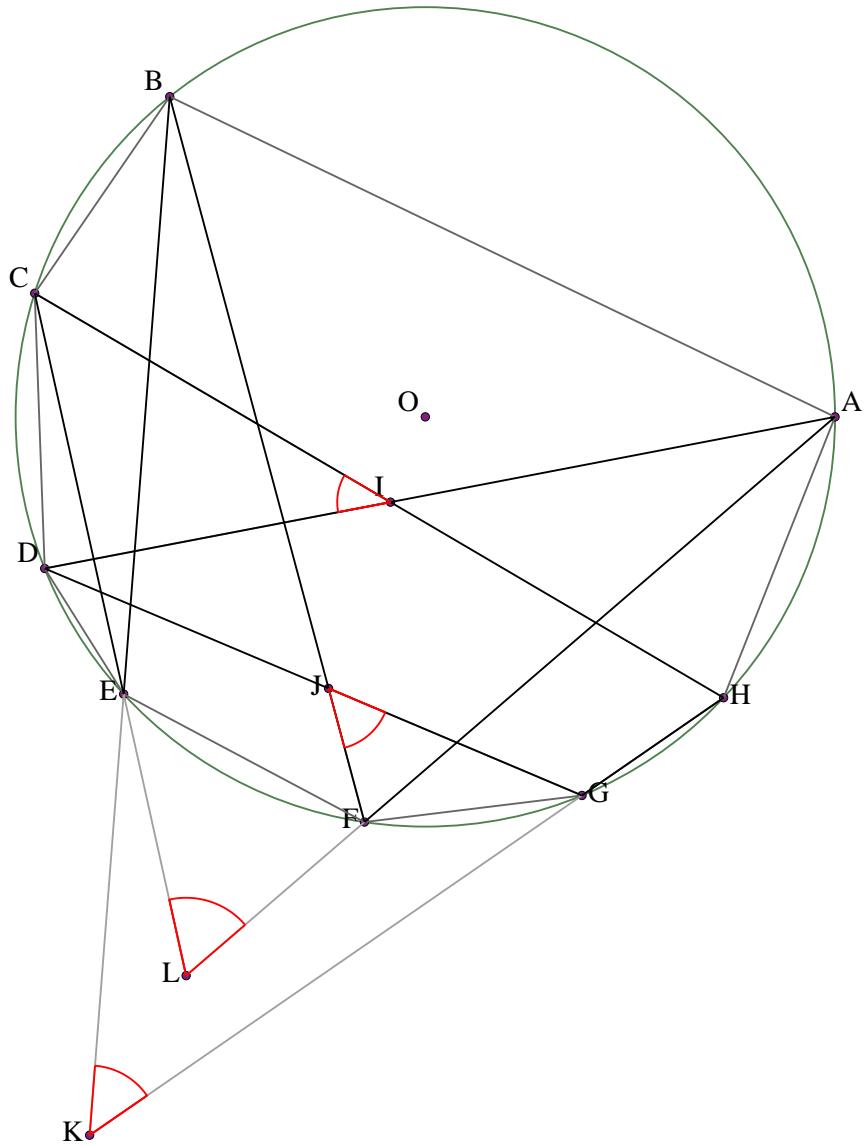
Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of FE and BA . Let J be the intersection of ED and HG . Let K be the intersection of DB and CH . Let L be the intersection of AC and GF .
 Angle $EJG = 71^\circ$. Angle $ALG = 55^\circ$. Angle $FIA = 47^\circ$.
 Find angle BKH .

Example 196



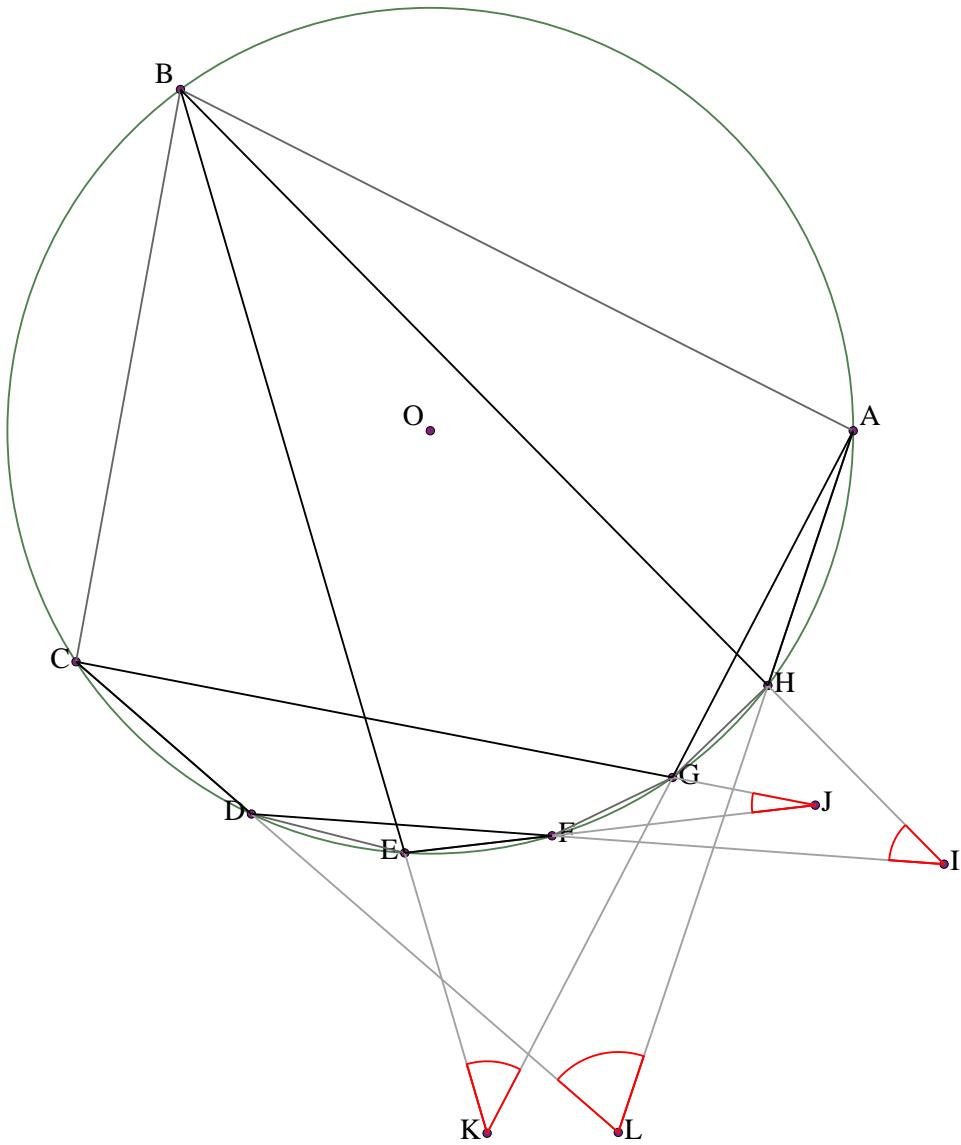
Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of DG and EA . Let J be the intersection of GF and CB . Let K be the intersection of FE and HC . Let L be the intersection of AH and BD . Angle $GIA = x$. Angle $GJB = y$. Angle $ALB = z$. Find angle FKH .

Example 197



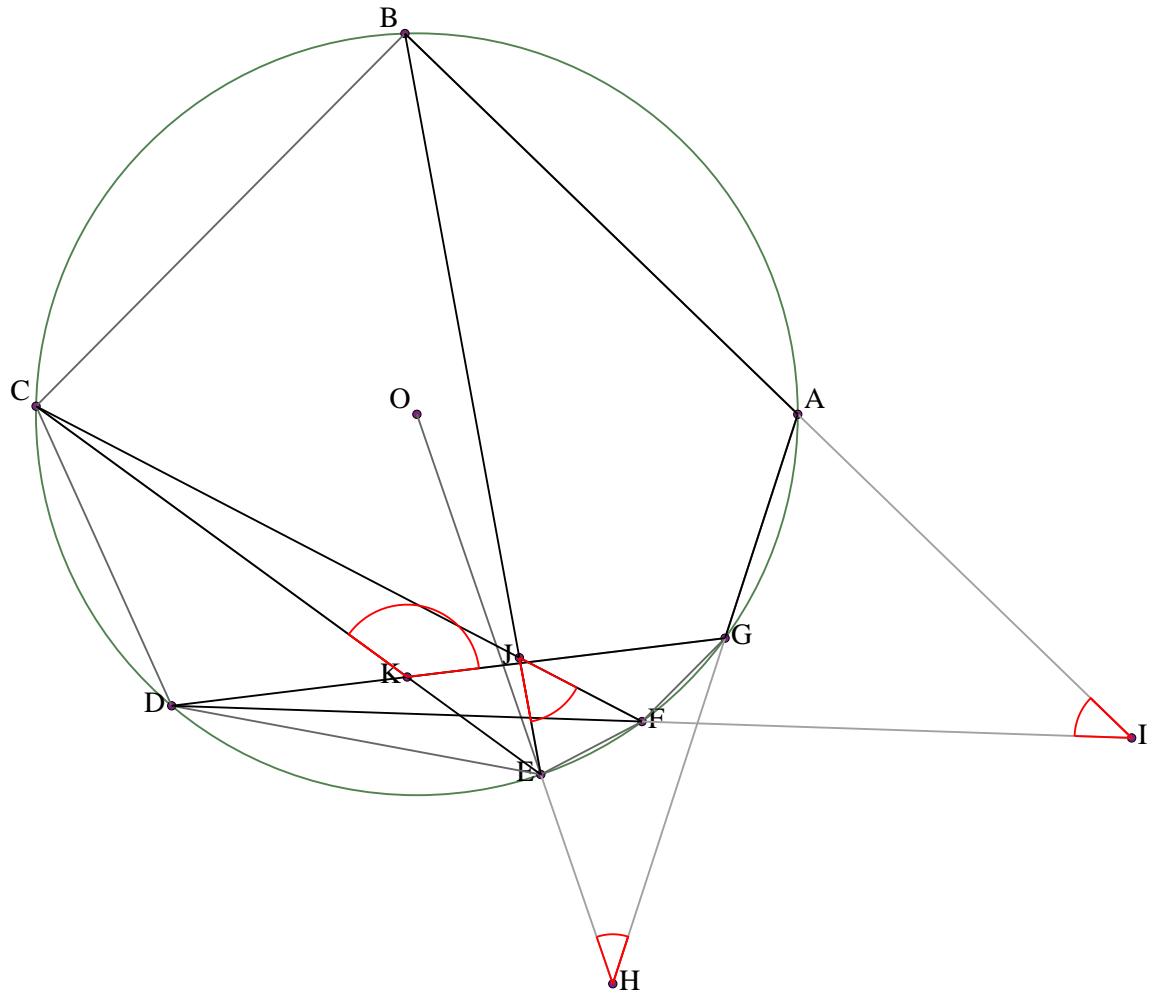
Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of AD and HC . Let J be the intersection of DG and BF . Let K be the intersection of GH and EB . Let L be the intersection of CE and FA . Prove that $CID + ELF = FJG + EKG$

Example 198



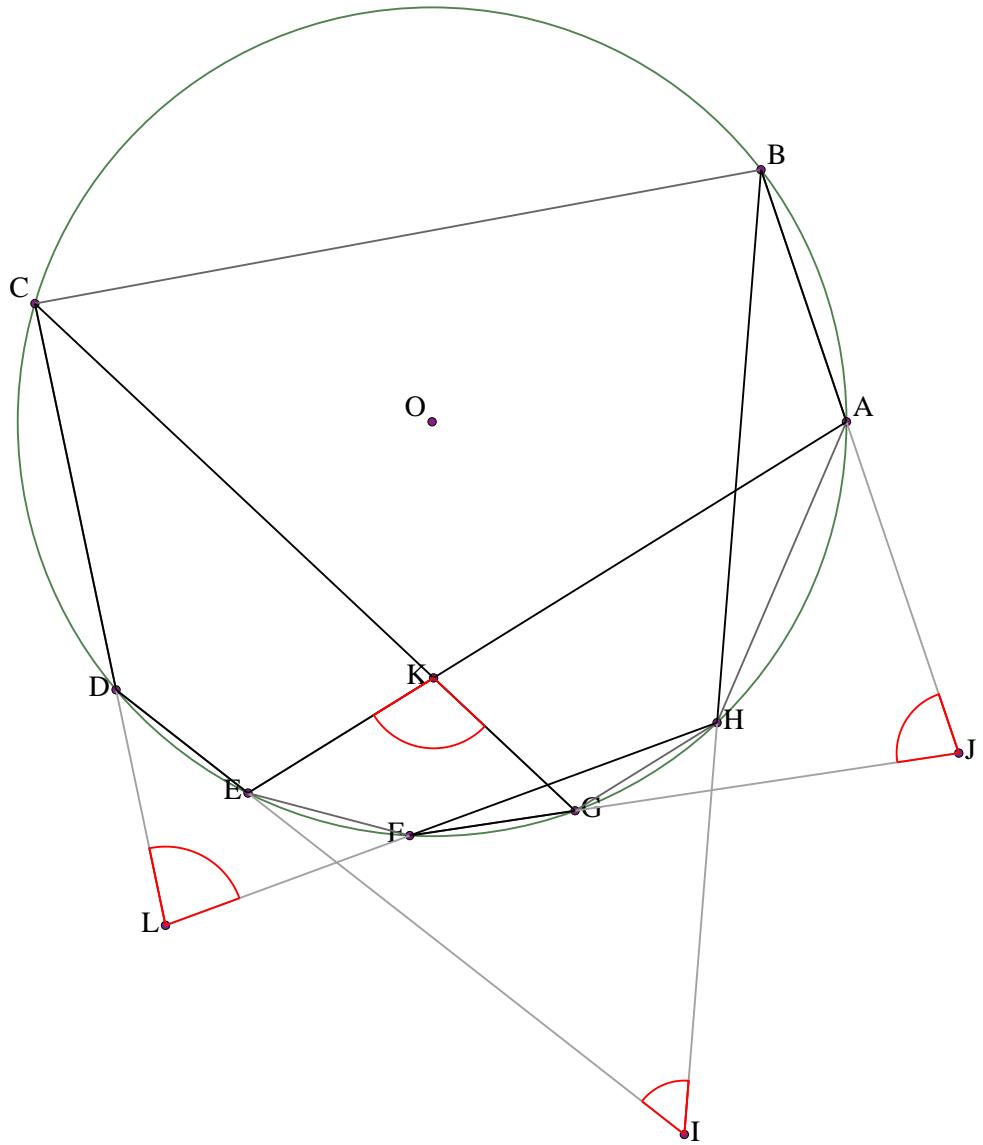
Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of DF and BH . Let J be the intersection of FE and GC . Let K be the intersection of EB and AG . Let L be the intersection of HA and CD . Prove that $FIH+EKG = FJG+DLH$

Example 199



Let $ABCDEFG$ be a cyclic heptagon with center O . Let H be the intersection of GA and EO . Let I be the intersection of AB and FD . Let J be the intersection of BE and CF . Let K be the intersection of EC and DG . Prove that $AIF + CKG = EHG + EJF + 90^\circ$

Example 200



Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of HB and ED . Let J be the intersection of BA and GF . Let K be the intersection of AE and CG . Let L be the intersection of DC and FH . Prove that $AJG+DLF = EIH+EKG$

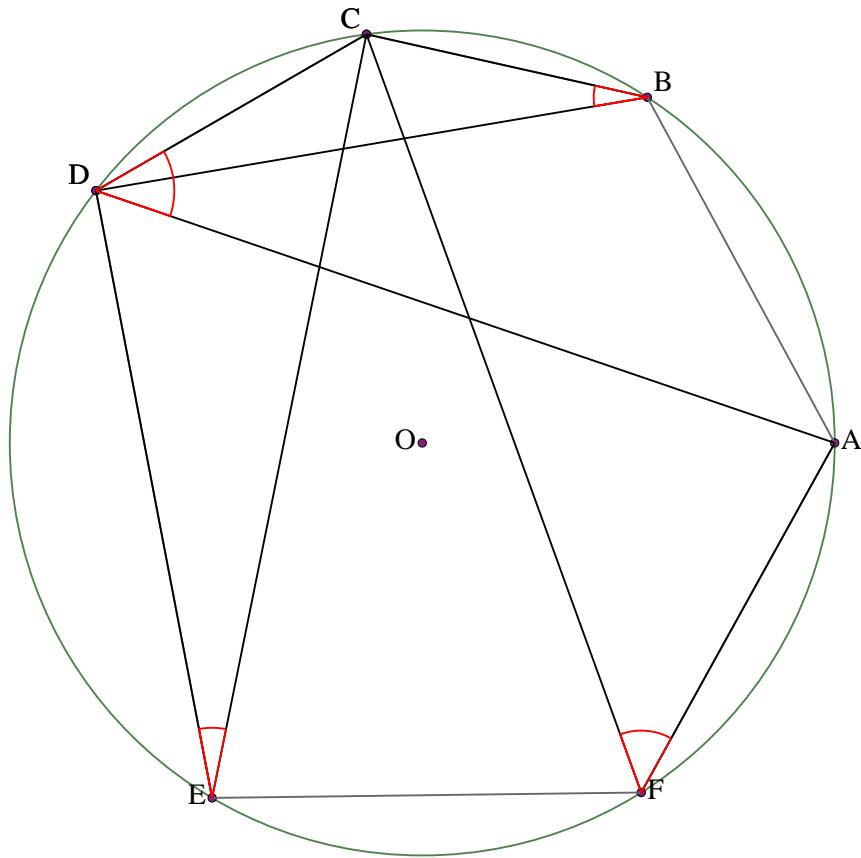
Answers

1. $DBC = 22^\circ$
 2. $ECB = 180^\circ - z$
 3. $EBF = 21^\circ$
 4. $DCA = 180^\circ - y$
 5. $CBF = 70^\circ$
 6. $EDF = 19^\circ$
 7. $EFA = 105^\circ$
 8. $CDA = x + y - z$
 10. $CBA = x - y + z + 270^\circ$
 15. $EAC = x + y - z$
 16. $BCD = 127^\circ$
 17. $GAH = x - y - z$
 18. $HFG = 180^\circ - x - y - z$
 19. $HGE = 132^\circ$
 20. $ACD = 99^\circ$
 22. $OFB = 34^\circ$
 23. $DAE = x - y - z + 90^\circ$
 24. $CFG = x - y - z$
 25. $CFD = x + y - z$
 27. $GCA = x + y + z - 360^\circ$
 28. $GED = 103^\circ$
 29. $FEH = 35^\circ$
 30. $DEF = 360^\circ - x - y - z$
 31. $FAE = 19^\circ$
 33. $DBE = x - y - z + 90^\circ$
 34. $CFE = 52^\circ$
 36. $EAC = 55^\circ$
 38. $BDO = 48^\circ$
 39. $GHA = 119^\circ$
 44. $OBC = x - y - z + 270^\circ$
 46. $DAO = x + y - z - 90^\circ$
 53. $CEF = 108^\circ$
 55. $ECD = 21^\circ$
 56. $ECD = 20^\circ$
 57. $AHB = 76^\circ$
 58. $FCE = 17^\circ$
 59. $DEF = 131^\circ$
 60. $AHG = x + y + z - 90^\circ$
 61. $CAF = 61^\circ$
 62. $DBO = 33^\circ$
 63. $BDC = 22^\circ$
 64. $CBF = 107^\circ$
 65. $BIF = x + y + z - 90^\circ$
 67. $FBD = 29^\circ$
 68. $CFA = x - y - z + 180^\circ$

69. $DFC = x + y - z$
 70. $FHD = 41^\circ$
 72. $GHF = x + y - z - 180^\circ$
 73. $BHE = 67^\circ$
 74. $EHG = 27^\circ$
 76. $FCE = x + y - z$
 77. $DCB = x - y - z + 180^\circ$
 78. $DAC = 180^\circ - x - y - z$
 80. $DGE = x + y - z$
 81. $CGE = 270^\circ - x - y - z$
 82. $DCE = x - y - z$
 83. $ABF = 60^\circ$
 86. $ODE = x + y - z + 90^\circ$
 87. $BAF = x + y - z$
 89. $ADG = 44^\circ$
 90. $EJG = x + y - z$
 91. $CDE = 270^\circ - x - y - z$
 92. $EDB = x + y + z - 90^\circ$
 93. $EIF = 76^\circ$
 96. $AFO = x + y - z$
 97. $BHE = x - y - z + 180^\circ$
 98. $BEG = 64^\circ$
 99. $EBF = x - y - z + 90^\circ$
 100. $FCA = 51^\circ$
 101. $CID = 47^\circ$
 102. $CED = x - y - z$
 104. $GHC = 180^\circ - x - y - z$
 106. $FHG = x + y - z$
 107. $DCH = 95^\circ$
 108. $FIA = 56^\circ$
 110. $EHD = 51^\circ$
 111. $AGE = 141^\circ$
 112. $FBC = 72^\circ$
 115. $DEB = 270^\circ - x - y - z$
 117. $AEC = 36^\circ$
 118. $ECD = x + y + z - 90^\circ$
 119. $CHE = 89^\circ$
 120. $EDF = x - y - z + 180^\circ$
 121. $ODE = 75^\circ$
 122. $FBA = 43^\circ$
 123. $AJF = 61^\circ$
 126. $DFE = x + y - z$
 130. $FHD = x - y - z + 180^\circ$
 132. $GJF = x + y - z$
 133. $FHA = x - y - z$

135. $AIG = x + y - z$
 136. $GBE = x + y - z$
 137. $FHB = x - y - z + 90^\circ$
 140. $DHF = 46^\circ$
 144. $EIF = 83^\circ$
 146. $FHE = x - y - z + 180^\circ$
 147. $EID = x + y + z - 90^\circ$
 148. $EIF = 66^\circ$
 149. $FIG = x + y + z - 180^\circ$
 150. $DIF = 180^\circ - x - y - z$
 152. $AJF = x + y - z$
 153. $BJE = x - y - z + 90^\circ$
 154. $AIG = 146^\circ$
 155. $AJG = 40^\circ$
 156. $OFC = 30^\circ$
 157. $AGB = 141^\circ$
 159. $GJF = x + y - z - 90^\circ$
 161. $DJG = 136^\circ$
 163. $DFA = 72^\circ$
 164. $FKA = x + y - z$
 165. $AIE = x + y - z + 90^\circ$
 166. $FIC = x + y - z - 180^\circ$
 168. $CIA = x - y - z + 90^\circ$
 169. $BJH = x - y - z + 180^\circ$
 170. $CKE = 74^\circ$
 172. $EJB = x - y - z + 90^\circ$
 173. $CKB = 51^\circ$
 174. $GJF = 49^\circ$
 175. $BJC = 35^\circ$
 176. $HIG = x + y - z$
 177. $BJA = 66^\circ$
 178. $BKA = 66^\circ$
 180. $BJC = 43^\circ$
 181. $BIC = 43^\circ$
 182. $FLH = x - y - z + 180^\circ$
 183. $BJA = 20^\circ$
 184. $AHB = 39^\circ$
 187. $EJH = x + y - z$
 188. $HLG = x + y - z$
 189. $CHD = x + y - z$
 190. $GJF = 9^\circ$
 191. $FLE = x + y - z$
 195. $BKH = 79^\circ$
 196. $FKH = x + y - z$

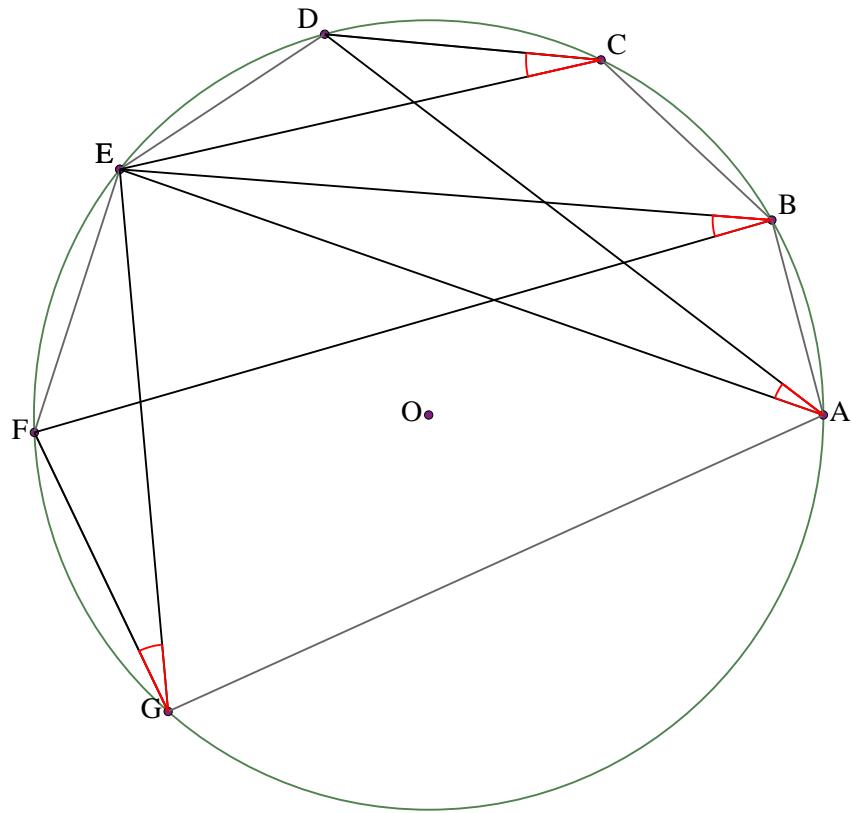
Solution to example 1



Let ABCDEF be a cyclic hexagon with center O. Angle DEC = 22° . Angle ADC = 49° . Angle CFA = 49° . Find angle DBC.

As CED and CBD stand on the same chord, $CBD = CED$, so $CBD = 22$.

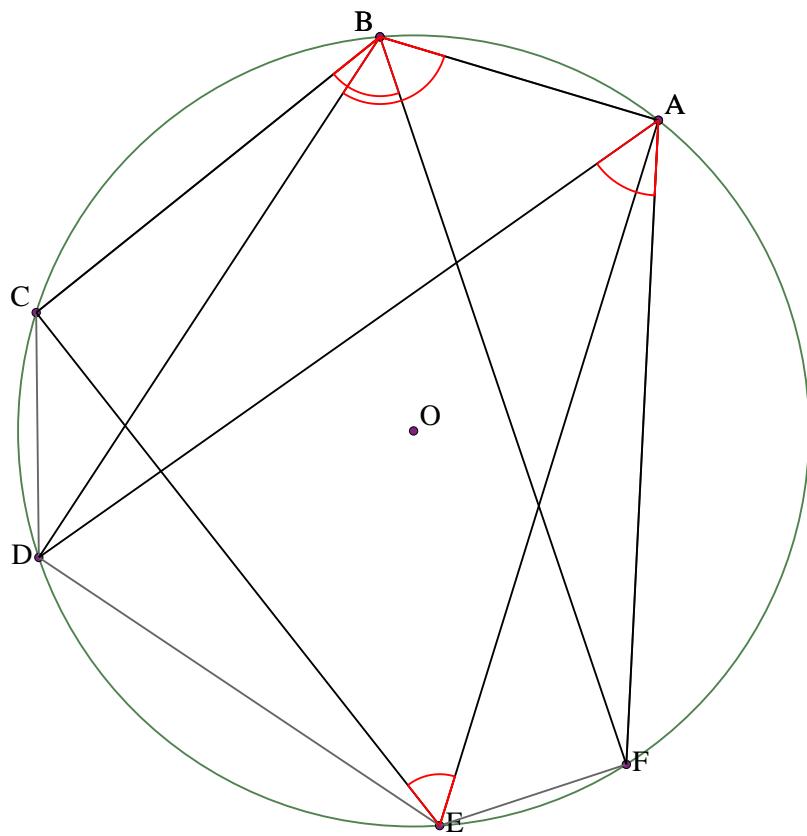
Solution to example 3



Let ABCDEFG be a cyclic heptagon with center O.
 Angle FGE = 21° . Angle ECD = 18° . Angle DAE = 18° .
 Find angle EBF.

As EGF and EBF stand on the same chord, $EBF = EGF$, so $EBF = 21$.

Solution to example 5



Let ABCDEF be a cyclic hexagon with center O.
 Angle FAD = 52° . Angle AEC = 55° . Angle ABD = 107° .
 Find angle CBF.

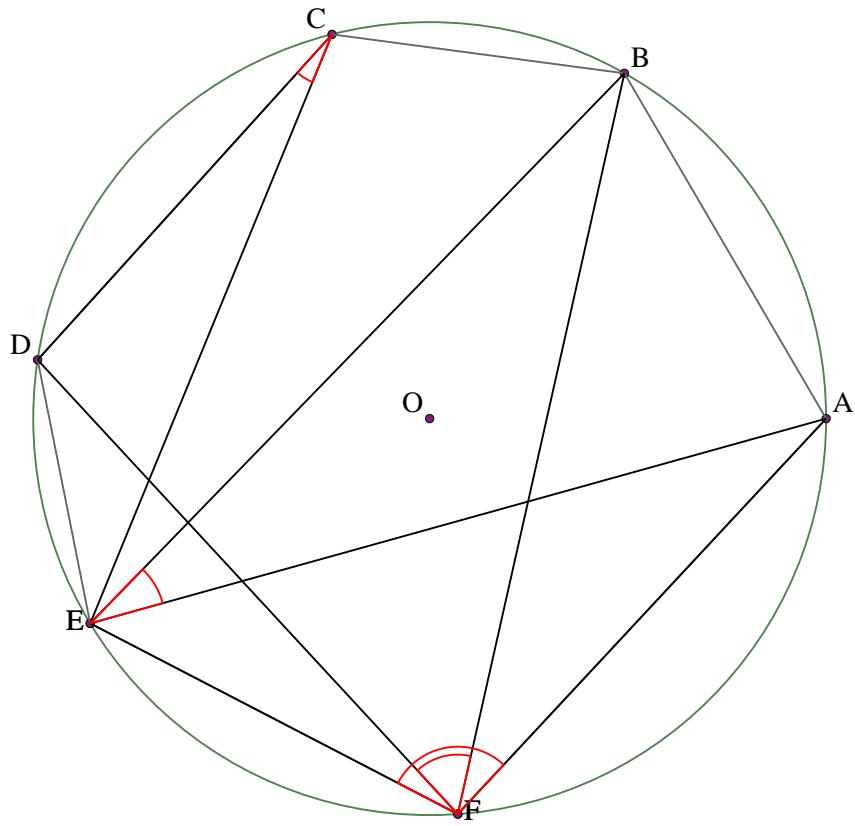
As AECB is a cyclic quadrilateral, $ABC = 180 - AEC$, so $ABC = 125$.

As DAF and DBF stand on the same chord, $DBF = DAF$, so $DBF = 52$.

As $ABD = 107$, $ABF = 55$.

As $ABC = 125$, $CBF = 70$.

Solution to example 7



Let ABCDEF be a cyclic hexagon with center O.

Angle ECD = 20°. Angle DFB = 55°. Angle BEA = 30°.

Find angle EFA.

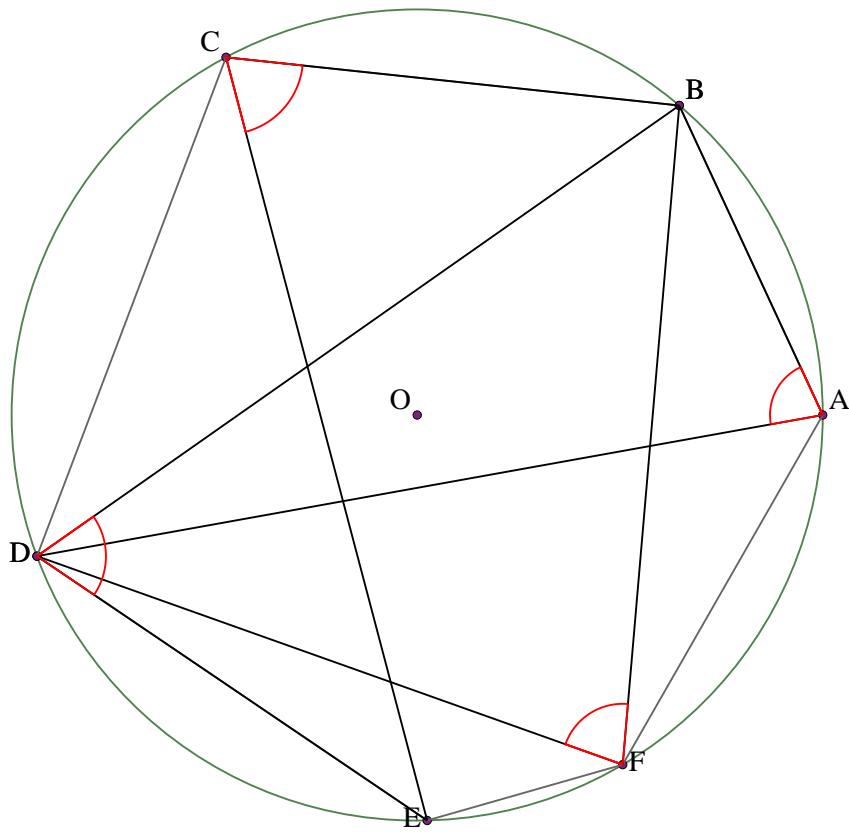
As DCE and DFE stand on the same chord, DFE=DCE, so DFE=20.

As AEB and AFB stand on the same chord, AFB=AEB, so AFB=30.

As BFD=55, DFA=85.

As DFE=20, EFA=105.

Solution to example 9



Let ABCDEF be a cyclic hexagon with center O.

Prove that $BFD + BDE = BAD + BCE$

Let $BAD=x$. Let $BFD=y$. Let $BDE=z$. Let $BCE=w$.

As BDE and BCE stand on the same chord, $BCE=BDE$, so $BCE=z$.

But $BCE=w$, so $z=w$.

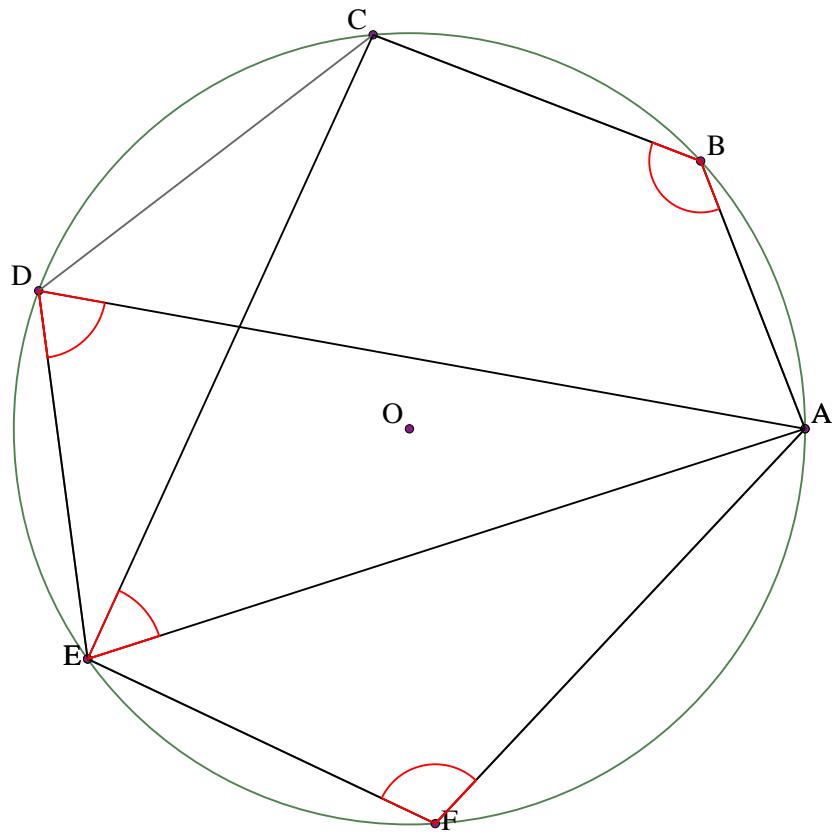
As BAD and BFD stand on the same chord, $BFD=BAD$, so $BFD=x$.

But $BFD=y$, so $x=y$.

We have these equations: $w-z=0$ (E1), $y-x=0$ (E2).

Hence $y+z-x-w=0$ (E2-E1), or $y+z=x+w$, or $BFD+BDE=BAD+BCE$.

Solution to example 11



Let ABCDEF be a cyclic hexagon with center O.

Prove that $ABC + AFE + ADE + AEC = 360$

Let $ABC=x$. Let $AFE=y$. Let $ADE=z$. Let $AEC=w$.

As AFED is a cyclic quadrilateral, $ADE=180-AFE$, so $ADE=180-y$.

But $ADE=z$, so $180-y=z$, or $180=y+z$.

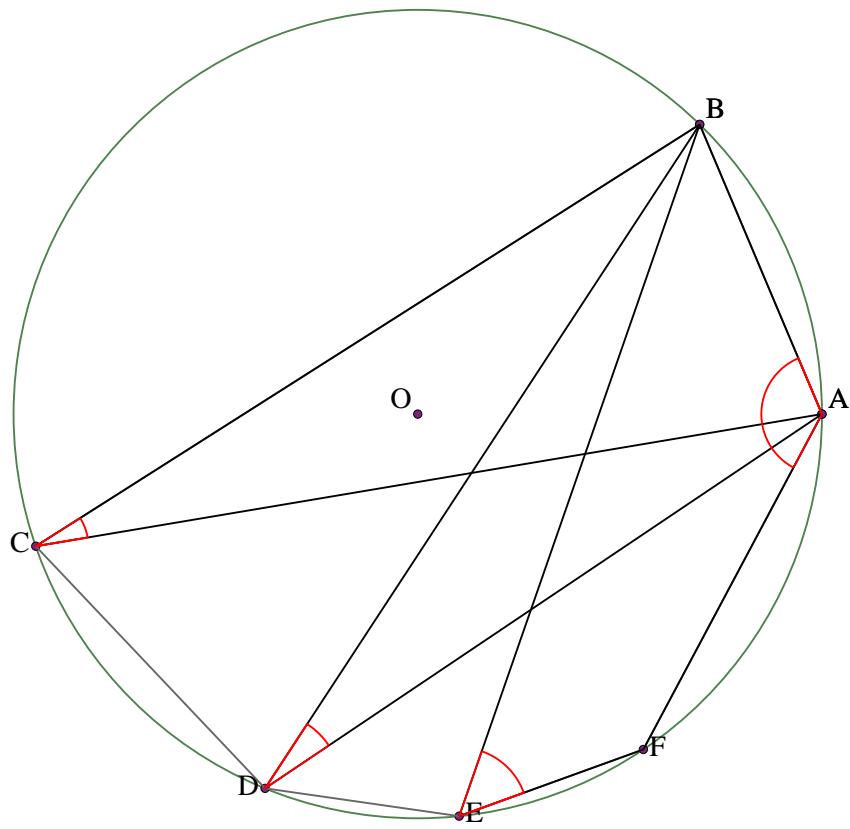
As ABCE is a cyclic quadrilateral, $AEC=180-ABC$, so $AEC=180-x$.

But $AEC=w$, so $180-x=w$, or $180=x+w$.

We have these equations: $y+z=180$ (E1), $x+w=180$ (E2).

Hence $x+y+z+w=360$ (E1+E2), or $ABC+AFE+ADE+AEC=360$.

Solution to example 13



Let ABCDEF be a cyclic hexagon with center O.

Prove that $ACB + BAF + BEF = ADB + 180$

Let $ACB = x$. Let $BAF = y$. Let $BEF = z$. Let $ADB = w$.

As BAFE is a cyclic quadrilateral, $BEF = 180 - BAF$, so $BEF = 180 - y$.

But $BEF = z$, so $180 - y = z$, or $180 = y + z$.

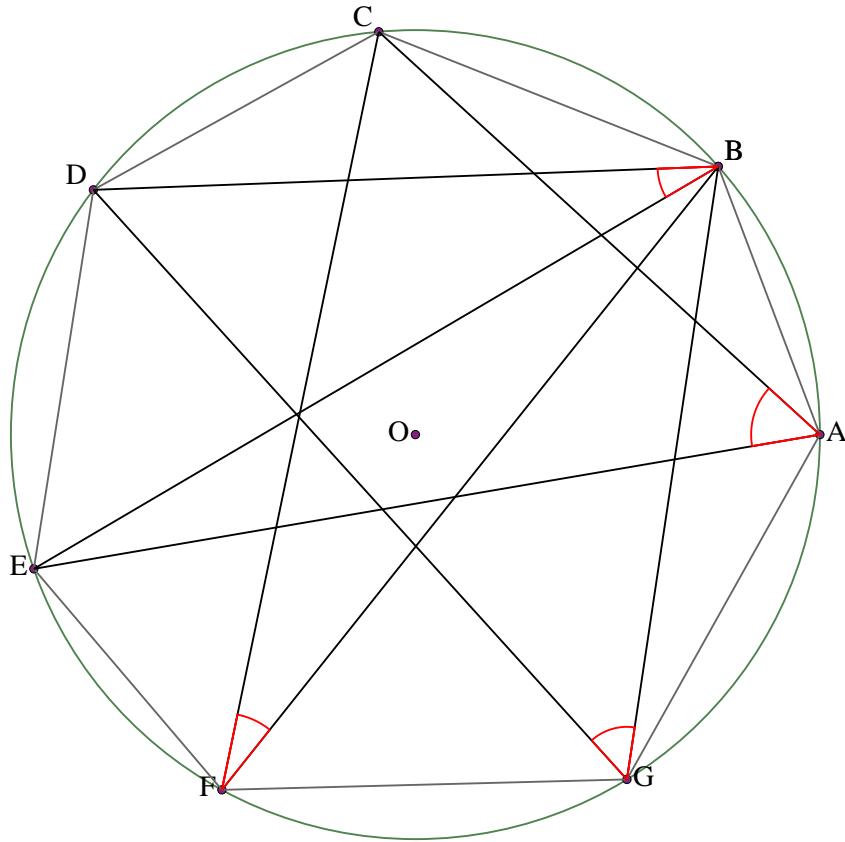
As ACB and ADB stand on the same chord, $ADB = ACB$, so $ADB = x$.

But $ADB = w$, so $x = w$.

We have these equations: $y + z = 180$ (E1), $w - x = 0$ (E2).

Hence $x + y + z - w = 180$ (E2 - E1), or $x + y + z = w + 180$, or $ACB + BAF + BEF = ADB + 180$.

Solution to example 15



Let ABCDEFG be a cyclic heptagon with center O.

Angle BGD = x. Angle DBE = y. Angle CFB = z.

Find angle EAC.

As BFC and BAC stand on the same chord, $BAC = BFC$, so $BAC = z$.

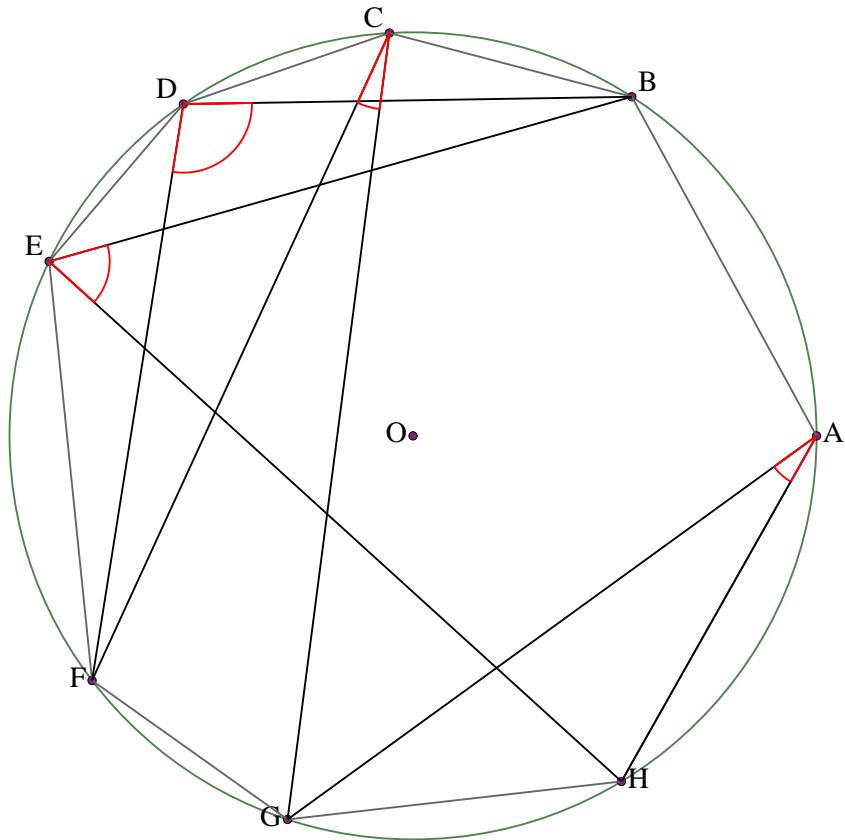
As BGD and BED stand on the same chord, $BED = BGD$, so $BED = x$.

As $DBE = y$, $BDE = 180 - x - y$.

As BDEA is a cyclic quadrilateral, $BAE = 180 - BDE$, so $BAE = x + y$.

As $BAC = z$, $CAE = x + y - z$.

Solution to example 17



Let ABCDEFGH be a cyclic octagon with center O.

Angle BDF = x. Angle HEB = y. Angle FCG = z.

Find angle GAH.

As BEHA is a cyclic quadrilateral, $BAH = 180^\circ - BEH$, so $BAH = 180^\circ - y$.

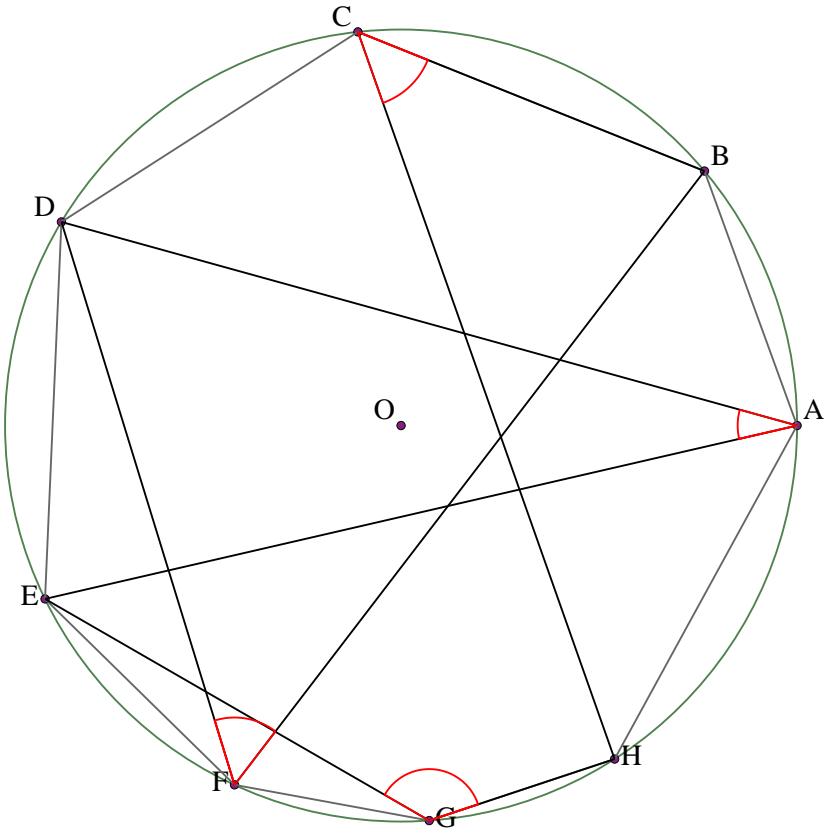
As BDF and BCF stand on the same chord, $BCF = BDF$, so $BCF = x$.

As $FCG = z$, $GCB = x - z$.

As BCGA is a cyclic quadrilateral, $BAG = 180^\circ - BCG$, so $BAG = z - x + 180^\circ$.

As $BAH = 180^\circ - y$, $HAG = x - y - z$.

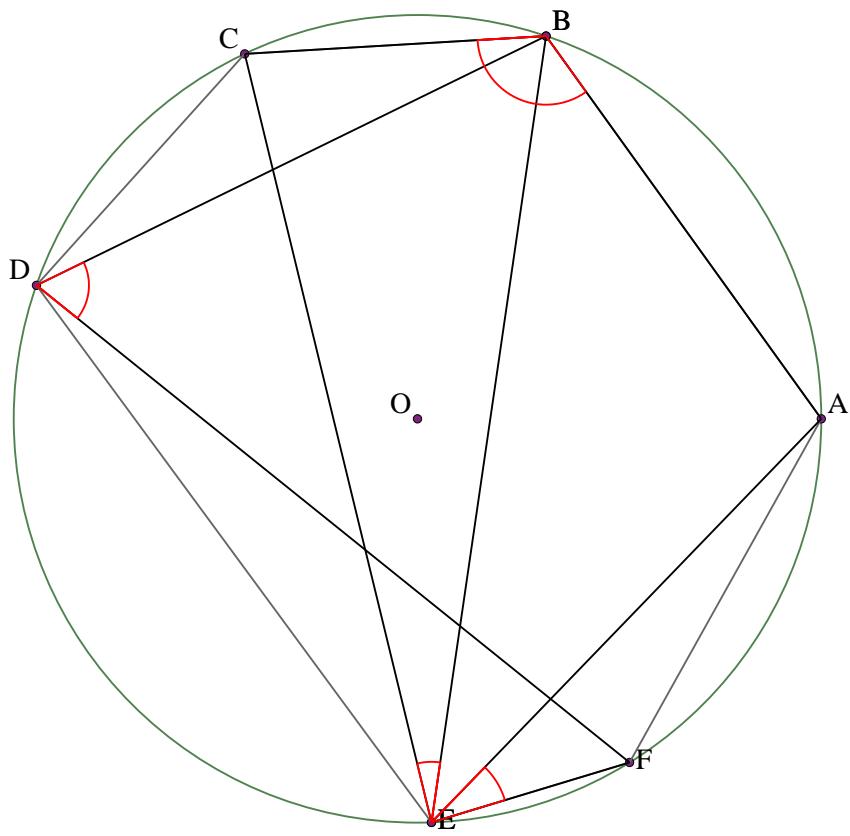
Solution to example 19



Let ABCDEFGH be a cyclic octagon with center O.
 Angle EAD = 28° . Angle DFB = 55° . Angle BCH = 49° .
 Find angle HGE.

As BCHA is a cyclic quadrilateral, $BAH = 180^\circ - BCH$, so $BAH = 131^\circ$.
 As BFD and BAD stand on the same chord, $BAD = BFD$, so $BAD = 55^\circ$.
 As $DAE = 28^\circ$, $EAB = 83^\circ$.
 As $BAH = 131^\circ$, $HAE = 48^\circ$.
 As EAHG is a cyclic quadrilateral, $EGH = 180^\circ - EAH$, so $EGH = 132^\circ$.

Solution to example 21



Let ABCDEF be a cyclic hexagon with center O.

Prove that $BDF + BEC + ABC = AEF + 180$

Let $BDF=x$. Let $BEC=y$. Let $ABC=z$. Let $AEF=w$.

As $ABCE$ is a cyclic quadrilateral, $AEC=180-ABC$, so $AEC=180-z$.

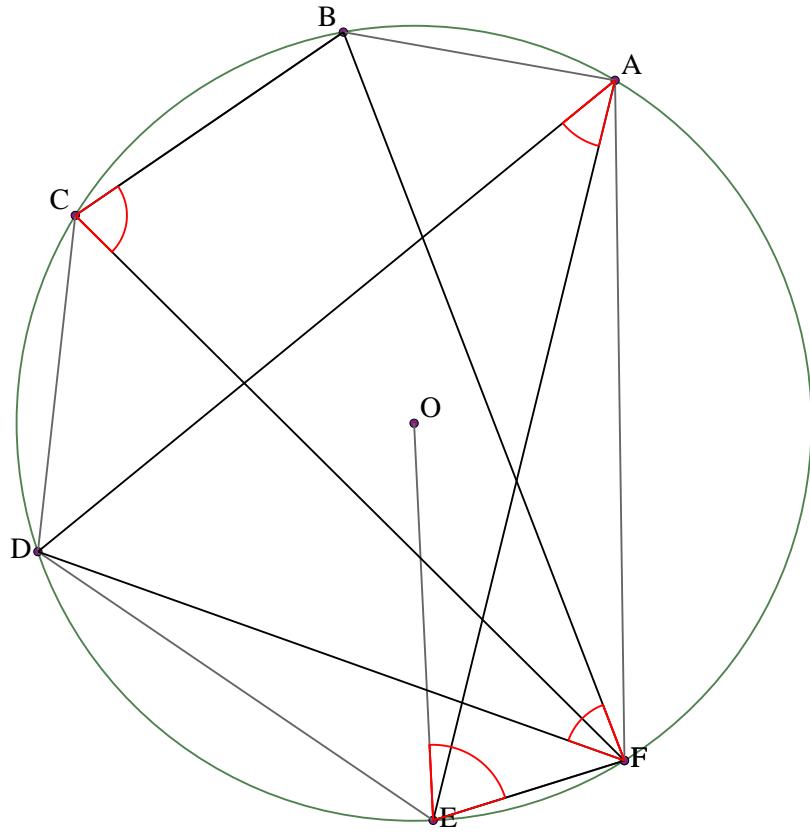
As $BEC=y$, $BEA=180-y-z$.

As BDF and BEF stand on the same chord, $BEF=BDF$, so $BEF=x$.

As $AEF=w$, $AEB=x-w$.

But $AEB=180-y-z$, so $x-w=180-y-z$, or $x+y+z=w+180$, or $BDF+BEC+ABC=AEF+180$.

Solution to example 23



Let ABCDEF be a cyclic hexagon with center O.

Angle OEF = x. Angle FCB = y. Angle BFD = z.

Find angle DAE.

As triangle FEO is isosceles, $\angle EOF = 180 - 2x$.

As EOF is at the center of a circle on the same chord as EAF, $\angle EOF = 2\angle EAF$, so $\angle EAF = 90 - x$.

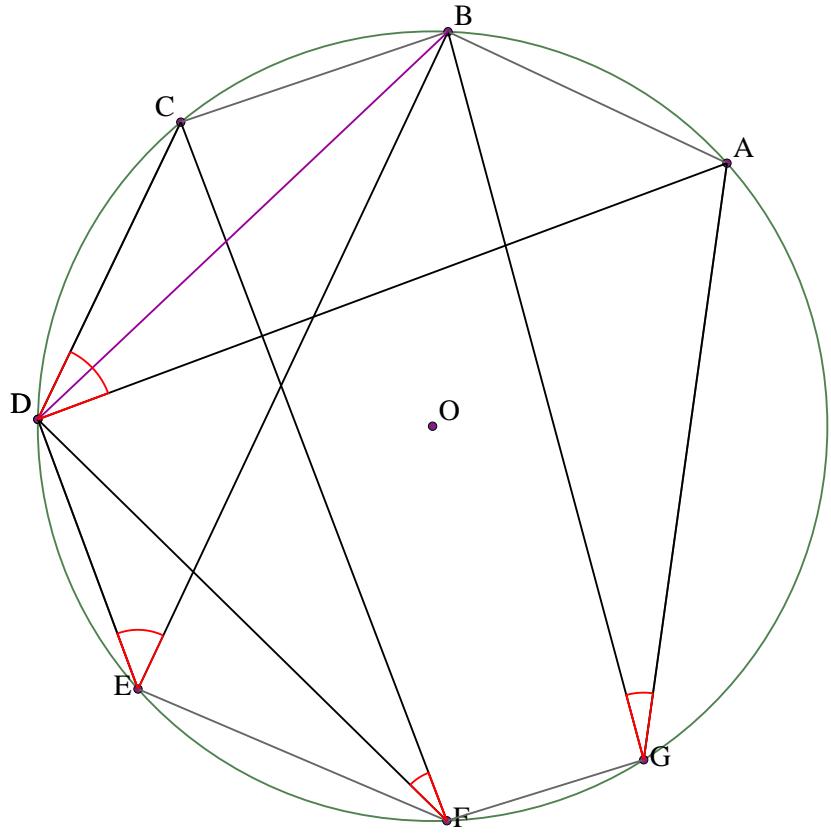
As BFDC is a cyclic quadrilateral, $\angle BCD = 180 - \angle BFD$, so $\angle BCD = 180 - z$.

As $\angle BCF = y$, $\angle FCD = 180 - y - z$.

As DCF and DAF stand on the same chord, $\angle DAF = \angle DCF$, so $\angle DAF = 180 - y - z$.

As $\angle EAF = 90 - x$, $\angle EAD = x - y - z + 90$.

Solution to example 25



Let $ABCDEFG$ be a cyclic heptagon with center O .

$$\text{Angle DEB} = x, \text{Angle BGA} = y, \text{Angle ADC} = z.$$

Find angle CFD.

Draw line BD.

As $BEDC$ is a cyclic quadrilateral, $BCD = 180 - BED$, so $BCD = 180 - x$.

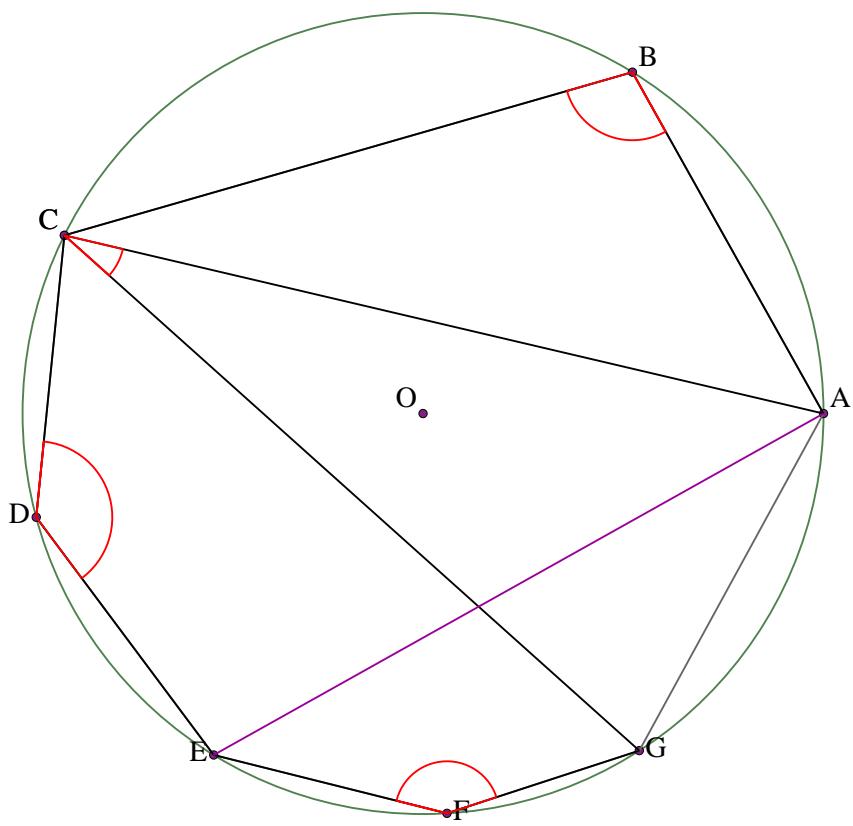
As AGB and ADB stand on the same chord, $ADB = AGB$, so $ADB = y$.

As $ADC = z$, $CDB = z - y$.

As $BCD = 180 - x$, $CBD = x + y - z$.

As CBD and CFD stand on the

Solution to example 27



Let ABCDEFG be a cyclic heptagon with center O.

Angle EFG = x . Angle ABC = y . Angle CDE = z .

Find angle GCA.

Draw line AE.

As EFGA is a cyclic quadrilateral, $EAG = 180 - EFG$, so $EAG = 180 - x$.

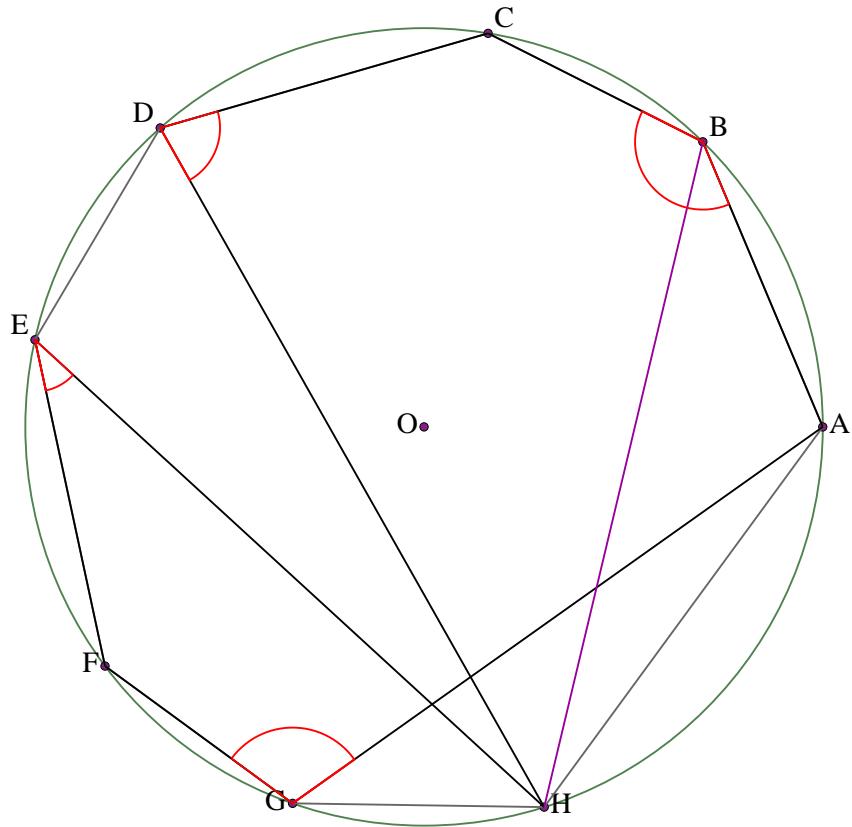
As CDEA is a cyclic quadrilateral, $CAE = 180 - CDE$, so $CAE = 180 - z$.

As $EAG = 180 - x$, $GAC = 360 - x - z$.

As ABCG is a cyclic quadrilateral, $AGC = 180 - ABC$, so $AGC = 180 - y$.

As $CAG = 360 - x - z$, $ACG = x + y + z - 360$.

Solution to example 29



Let ABCDEFGH be a cyclic octagon with center O.
 Angle $HDC = 77^\circ$. Angle $CBA = 140^\circ$. Angle $AGF = 108^\circ$.
 Find angle FEH .

Draw line BH .

As $CDHB$ is a cyclic quadrilateral, $CBH = 180^\circ - CDH$, so $CBH = 103^\circ$.

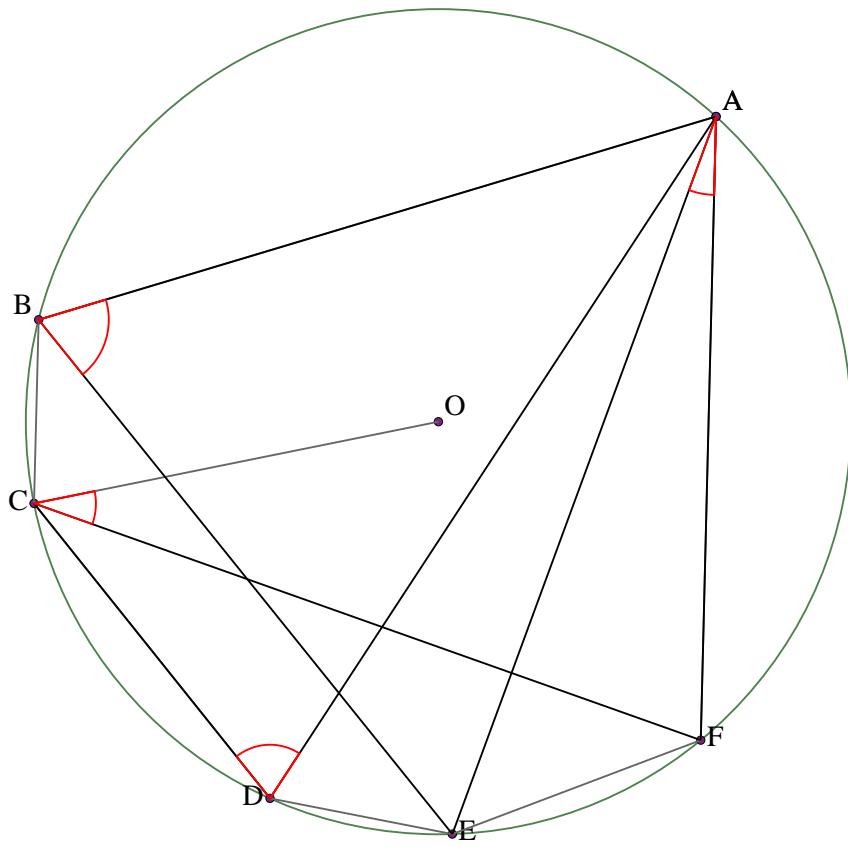
As $ABC = 140^\circ$, $ABH = 37^\circ$.

As ABH and AGH stand on the same chord, $AGH = ABH$, so $AGH = 37^\circ$.

As $AGH = 37^\circ$, $HGF = 145^\circ$.

As $FGHE$ is a cyclic quadrilateral, $FEH = 180^\circ - FGH$, so $FEH = 35^\circ$.

Solution to example 31



Let ABCDEF be a cyclic hexagon with center O.

Angle $ADC = 72^\circ$. Angle $ABE = 68^\circ$. Angle $OCF = 31^\circ$.

Find angle FAE .

As triangle FCO is isosceles, $CFO = 31$.

As ABE and ADE stand on the same chord, $ADE = ABE$, so $ADE = 68$.

As $ADC = 72$, $CDE = 140$.

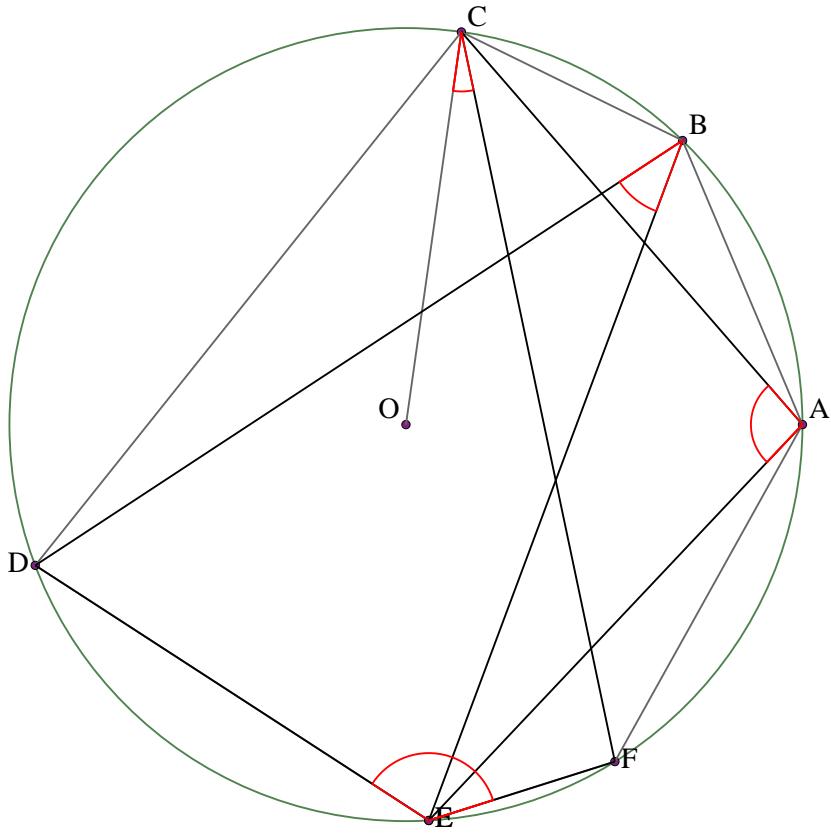
As CDEF is a cyclic quadrilateral, $CFE = 180 - CDE$, so $CFE = 40$.

As $CFO = 31$, $OFE = 71$.

As triangle EFO is isosceles, $EOF = 38$.

As EOF is at the center of a circle on the same chord as EAF, $EOF = 2EAF$, so $EAF = 19$.

Solution to example 33



Let ABCDEF be a cyclic hexagon with center O.

Angle EAC = x. Angle OCF = y. Angle FED = z.

Find angle DBE.

As CAED is a cyclic quadrilateral, $CDE=180-CAE$, so $CDE=180-x$.

As DEFC is a cyclic quadrilateral, $DCF=180-DEF$, so $DCF=180-z$.

As $FCO=y$, $OCD=180-y-z$.

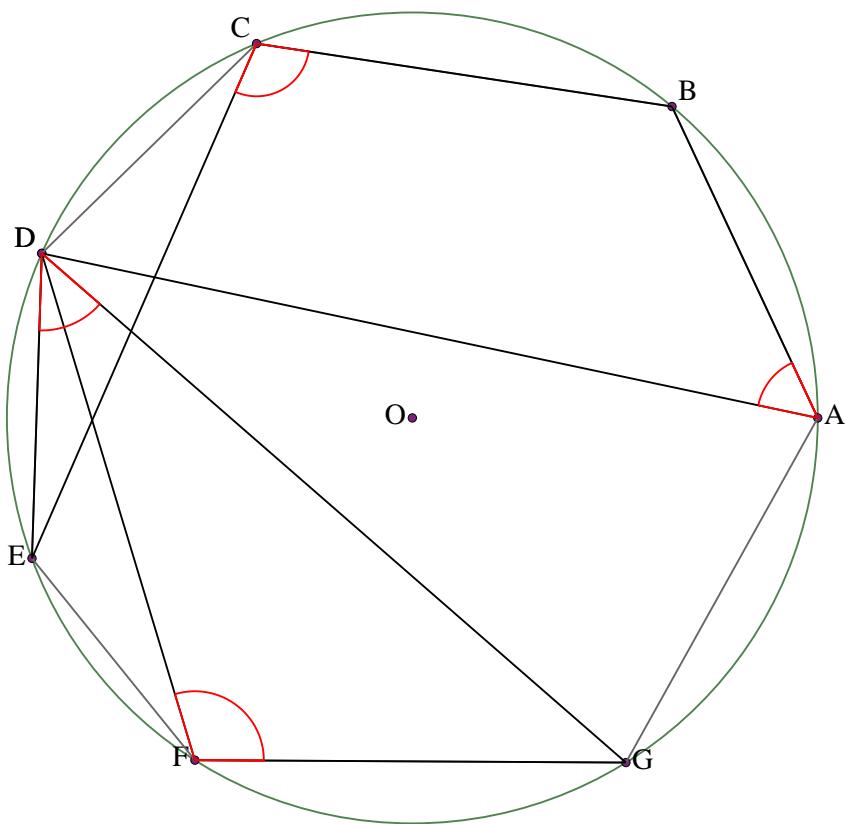
As triangle DCO is isosceles, $CDO=180-y-z$.

As $CDE=180-x$, $EDO=y+z-x$.

As triangle EDO is isosceles, $DOE=2x-2y-2z+180$.

As DOE is at the center of a circle on the same chord as DBE , $DOE=2DBE$, so $DBE=x-y-z+90$.

Solution to example 35



Let $ABCDEF$ be a cyclic heptagon with center O .

Prove that $DFG+EDG = BCE+BAD$

Let $BCE=x$. Let $BAD=y$. Let $DFG=z$. Let $EDG=w$.

As $EDGF$ is a cyclic quadrilateral, $EFG=180-EDG$, so $EFG=180-w$.

As $DFG=z$, $DFE=180-z-w$.

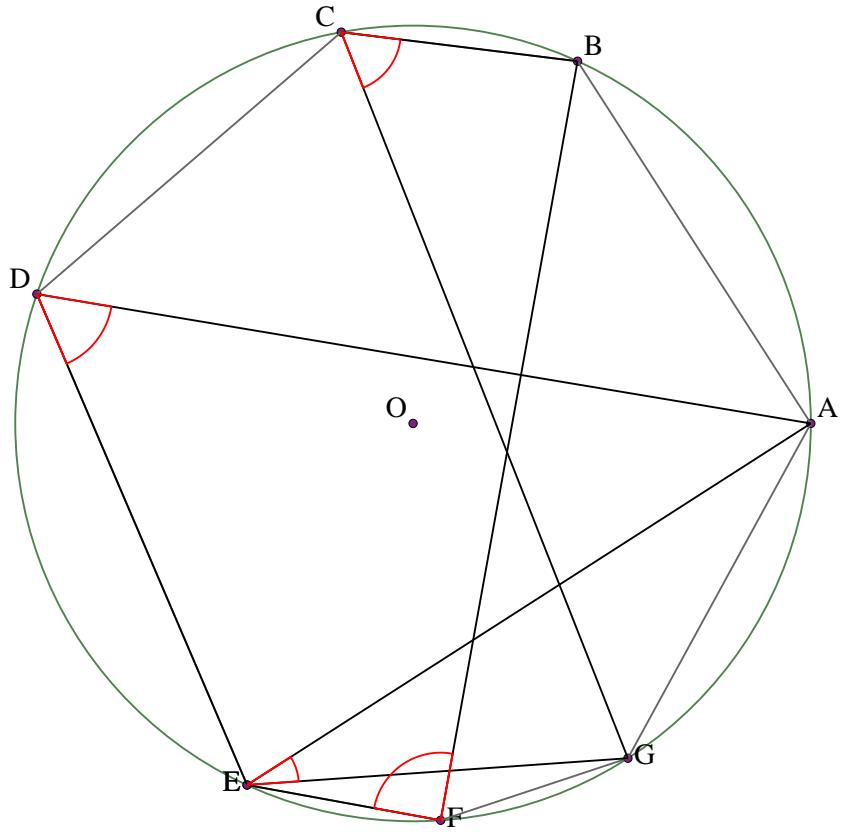
As $BADC$ is a cyclic quadrilateral, $BCD=180-BAD$, so $BCD=180-y$.

As $BCE=x$, $ECD=180-x-y$.

As DCE and DFE stand on the same chord, $DFE=DCE$, so $DFE=180-x-y$.

But $DFE=180-z-w$, so $180-x-y=180-z-w$, or $z+w=x+y$, or $DFG+EDG=BCE+BAD$.

Solution to example 37



Let ABCDEFG be a cyclic heptagon with center O.

Prove that $BCG + BFE + ADE = AEG + 180$

Let $AEG = x$. Let $BCG = y$. Let $BFE = z$. Let $ADE = w$.

As BCG and BFG stand on the same chord, $BFG = BCG$, so $BFG = y$.

As $BFE = z$, $EFG = y + z$.

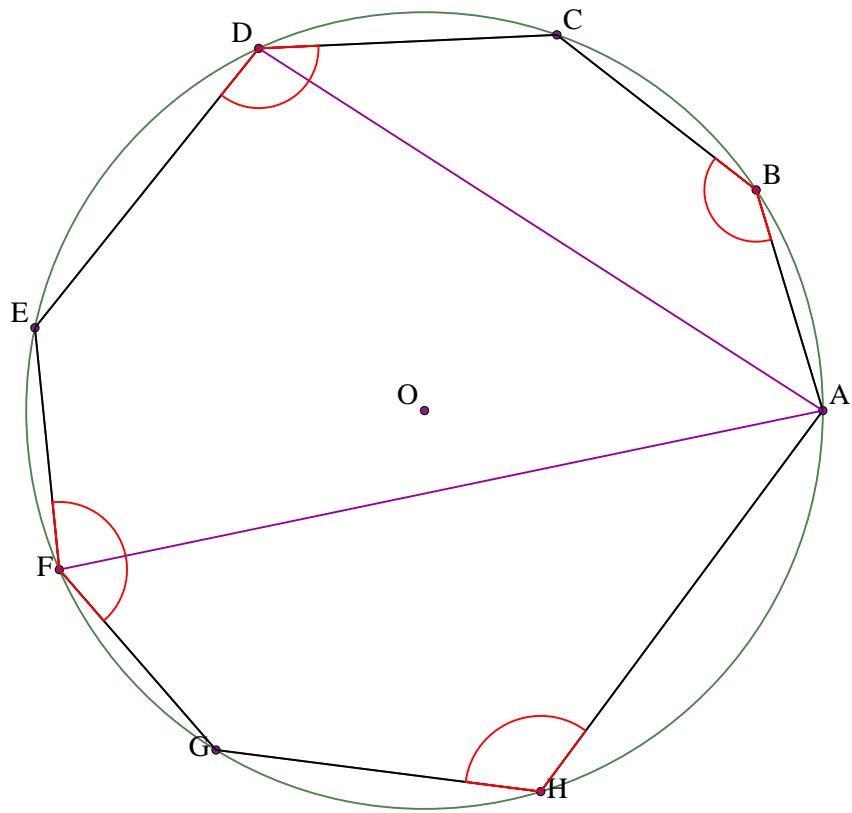
As $ADEG$ is a cyclic quadrilateral, $AGE = 180 - ADE$, so $AGE = 180 - w$.

As $AEG = x$, $EAG = w - x$.

As $EAGF$ is a cyclic quadrilateral, $EFG = 180 - EAG$, so $EFG = x - w + 180$.

But $EFG = y + z$, so $x - w + 180 = y + z$, or $y + z + w = x + 180$, or $BCG + BFE + ADE = AEG + 180$.

Solution to example 39



Let ABCDEFGH be a cyclic octagon with center O.
 Angle ABC = 145°. Angle CDE = 131°. Angle EFG = 145°.
 Find angle GHA.

Draw lines AD and AF.

As ABCD is a cyclic quadrilateral, $ADC = 180 - ABC$, so $ADC = 35$.

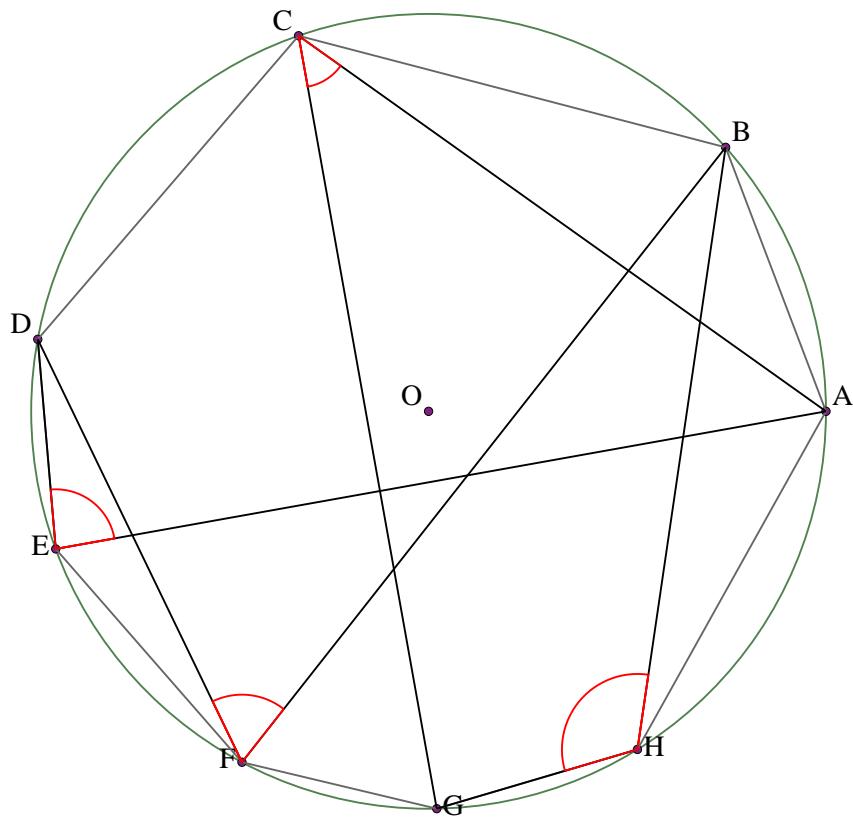
As $CDE = 131$, $EDA = 96$.

As ADEF is a cyclic quadrilateral, $AFE = 180 - ADE$, so $AFE = 84$.

As $AFE = 84$, $AFG = 61$.

As AFGH is a cyclic quadrilateral, $AHG = 180 - AFG$, so $AHG = 119$.

Solution to example 41



Let $ABCDEFGH$ be a cyclic octagon with center O .

Prove that $ACG + AED + BHG = BFD + 180$

Let $ACG = x$. Let $AED = y$. Let $BFD = z$. Let $BHG = w$.

As $BHGF$ is a cyclic quadrilateral, $BFG = 180 - BHG$, so $BFG = 180 - w$.

As $BFD = z$, $DFG = z - w + 180$.

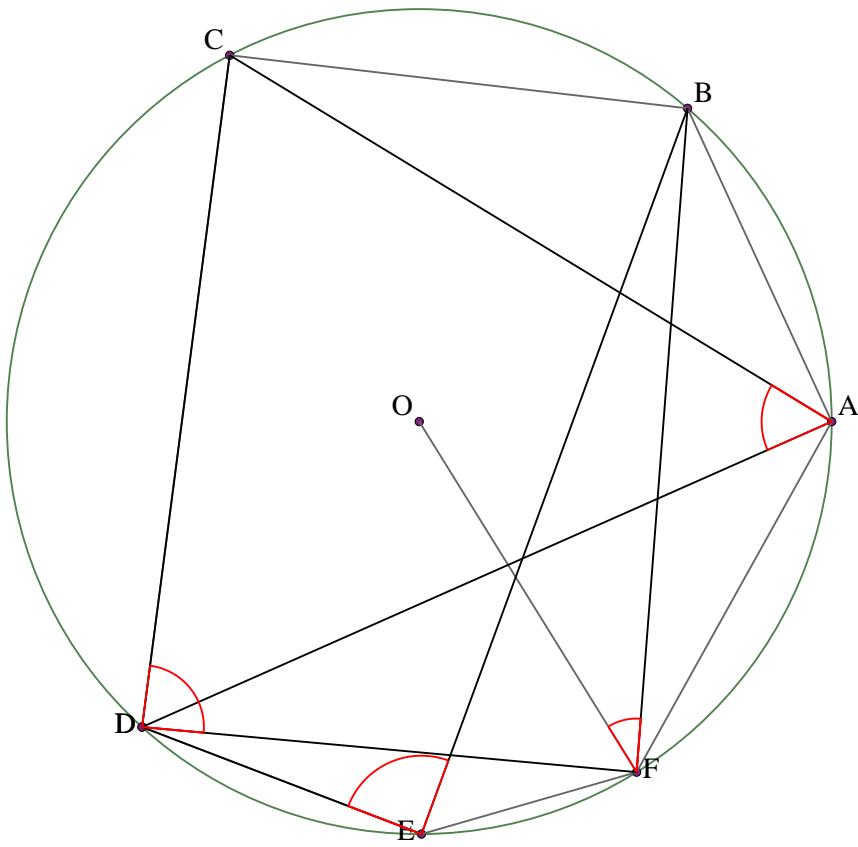
As $AEDC$ is a cyclic quadrilateral, $ACD = 180 - AED$, so $ACD = 180 - y$.

As $ACG = x$, $GCD = 180 - x - y$.

As $DCGF$ is a cyclic quadrilateral, $DFG = 180 - DCG$, so $DFG = x + y$.

But $DFG = z - w + 180$, so $x + y = z - w + 180$, or $x + y + w = z + 180$, or $ACG + AED + BHG = BFD + 180$.

Solution to example 43



Let ABCDEF be a cyclic hexagon with center O.

Prove that $BFO + CDF + CAD = BED + 90$

Let $BFO=x$. Let $CDF=y$. Let $CAD=z$. Let $BED=w$.

As triangle BFO is isosceles, $BOF=180-2x$.

As BOF is at the center of a circle on the same chord, but in the opposite direction to BAF , $BOF=360-2BAF$, so $BAF=x+90$.

As $CDFA$ is a cyclic quadrilateral, $CAF=180-CDF$, so $CAF=180-y$.

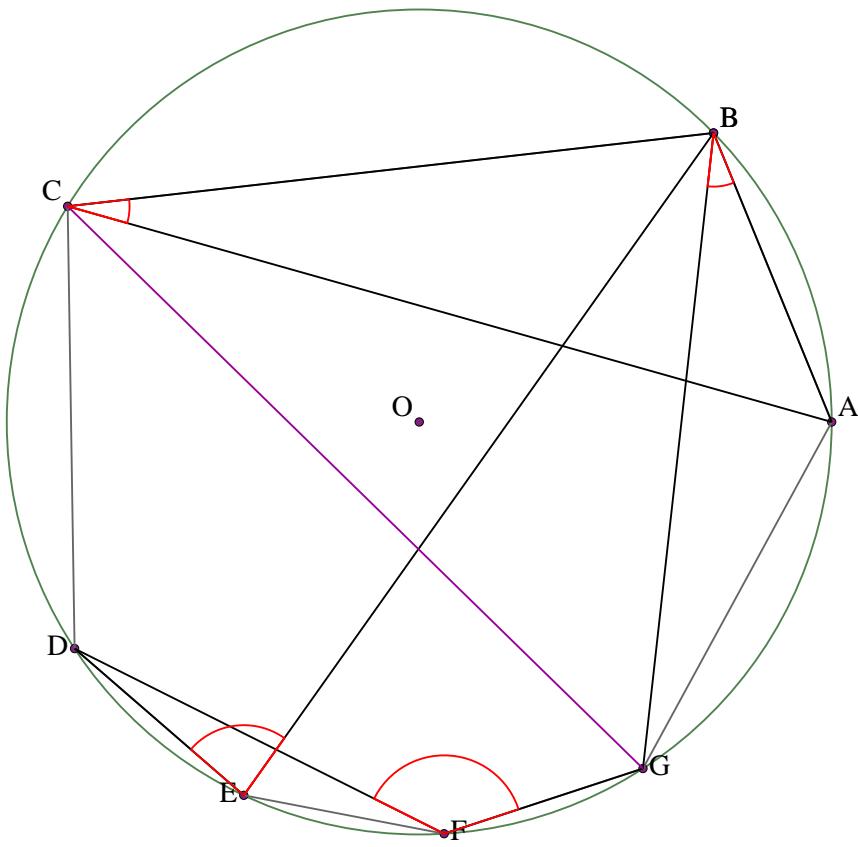
As BED and BAD stand on the same chord, $BAD=BED$, so $BAD=w$.

As $CAD=z$, $CAB=w-z$.

As $CAF=180-y$, $FAB=w-y-z+180$.

But $BAF=x+90$, so $w-y-z+180=x+90$, or $x+y+z=w+90$, or $BFO+CDF+CAD=BED+90$.

Solution to example 45



Let ABCDEFG be a cyclic heptagon with center O.

Prove that $DFG = ABG + ACB + BED$

Draw line CG.

Let $ABG = x$. Let $ACB = y$. Let $BED = z$. Let $DFG = w$.

As $BEDC$ is a cyclic quadrilateral, $BCD = 180 - BED$, so $BCD = 180 - z$.

As $ACB = y$, $ACD = 180 - y - z$.

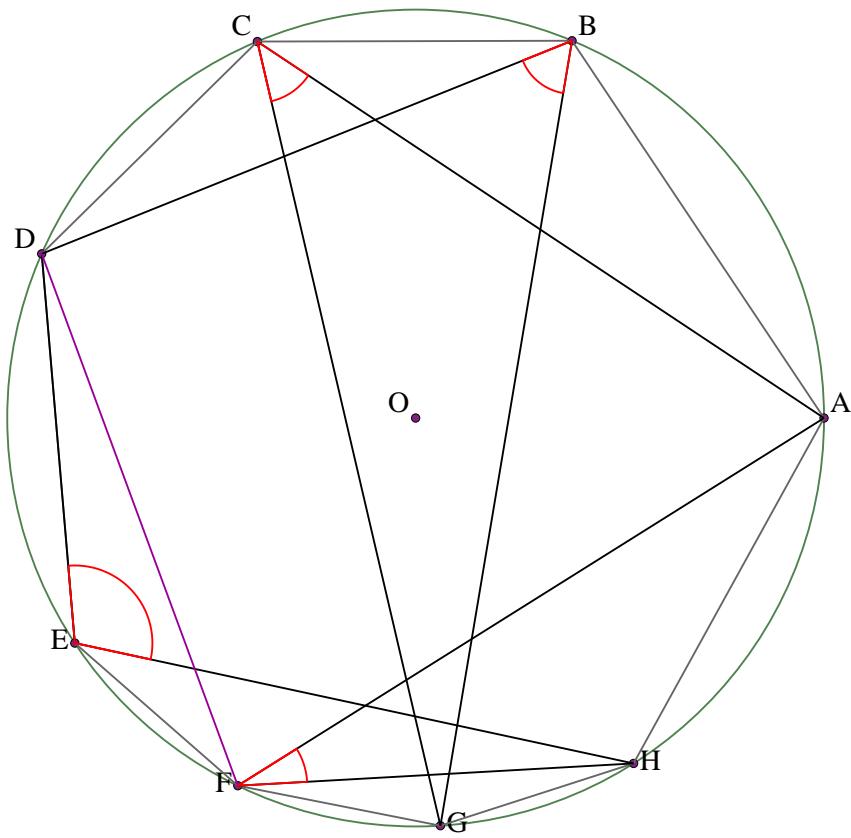
As ABG and ACG stand on the same chord, $ACG = ABG$, so $ACG = x$.

As $DFGC$ is a cyclic quadrilateral, $DCG = 180 - DFG$, so $DCG = 180 - w$.

As $ACG = x$, $ACD = x - w + 180$.

But $ACD = 180 - y - z$, so $x - w + 180 = 180 - y - z$, or $x + y + z = w$, or $ABG + ACB + BED = DFG$.

Solution to example 47



Let $ABCDEFGH$ be a cyclic octagon with center O .

Prove that $DBG+ACG+DEH = AFH+180$

Draw line DF .

Let $DBG=x$. Let $ACG=y$. Let $AFH=z$. Let $DEH=w$.

As DEH and DFH stand on the same chord, $DFH=DEH$, so $DFH=w$.

As $AFH=z$, $AFD=w-z$.

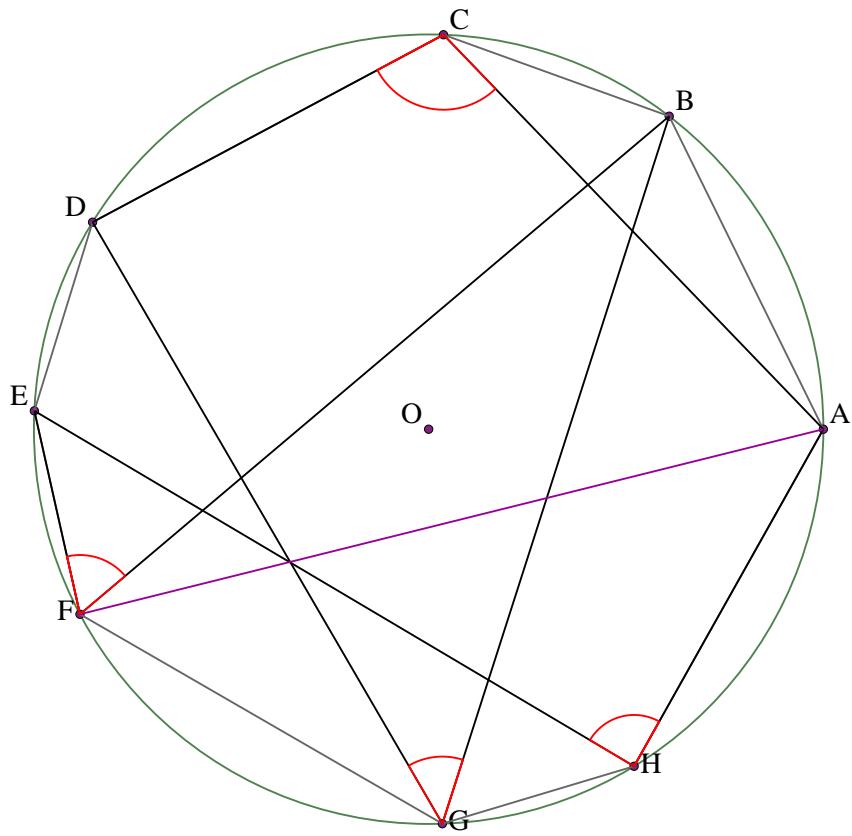
As ACG and ABG stand on the same chord, $ABG=ACG$, so $ABG=y$.

As $DBG=x$, $DBA=x+y$.

As $ABDF$ is a cyclic quadrilateral, $AFD=180-ABD$, so $AFD=180-x-y$.

But $AFD=w-z$, so $180-x-y=w-z$, or $x+y+w=z+180$, or $DBG+ACG+DEH=AFH+180$.

Solution to example 49



Let $ABCDEFGH$ be a cyclic octagon with center O .

Prove that $AHE + BGD + ACD = BFE + 180$

Draw line AF .

Let $AHE = x$. Let $BFE = y$. Let $BGD = z$. Let $ACD = w$.

As $BGDC$ is a cyclic quadrilateral, $BCD = 180 - BGD$, so $BCD = 180 - z$.

As $ACD = w$, $ACB = 180 - z - w$.

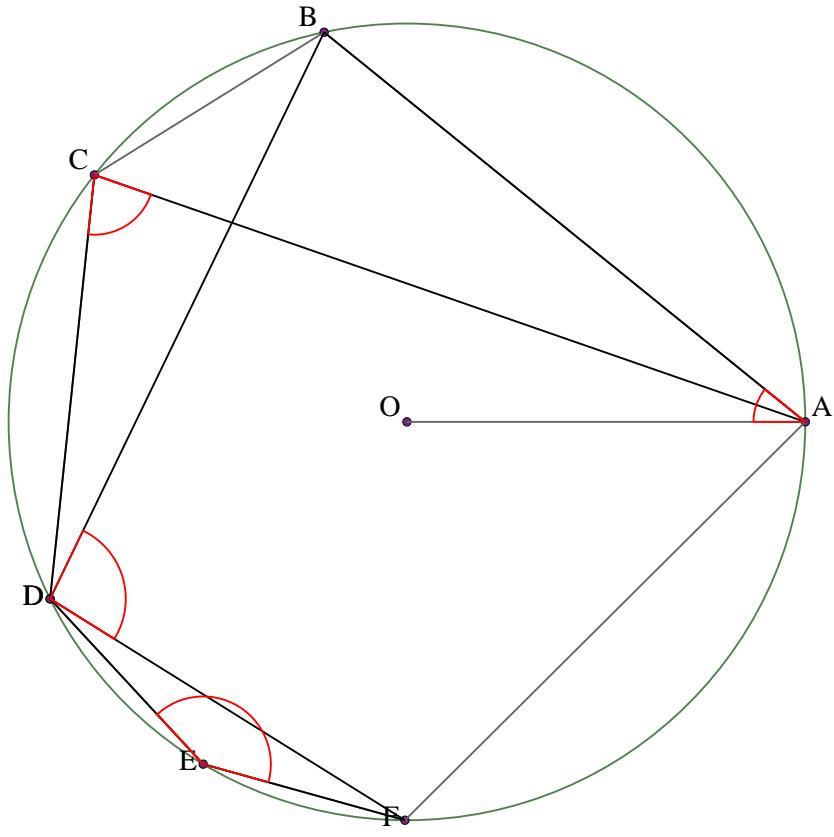
As AHE and AFE stand on the same chord, $AFE = AHE$, so $AFE = x$.

As $BFE = y$, $BFA = x - y$.

As AFB and ACB stand on the same chord, $ACB = AFB$, so $ACB = x - y$.

But $ACB = 180 - z - w$, so $x - y = 180 - z - w$, or $x + z + w = y + 180$, or $AHE + BGD + ACD = BFE + 180$.

Solution to example 51



Let ABCDEF be a cyclic hexagon with center O.

Prove that $ACD + DEF = BAO + BDF + 90$

Let $BAO=x$. Let $ACD=y$. Let $DEF=z$. Let $BDF=w$.

As $ACDF$ is a cyclic quadrilateral, $AFD=180-ACD$, so $AFD=180-y$.

As $BDFA$ is a cyclic quadrilateral, $BAF=180-BDF$, so $BAF=180-w$.

As $BAO=x$, $OAF=180-x-w$.

As triangle FAO is isosceles, $AFO=180-x-w$.

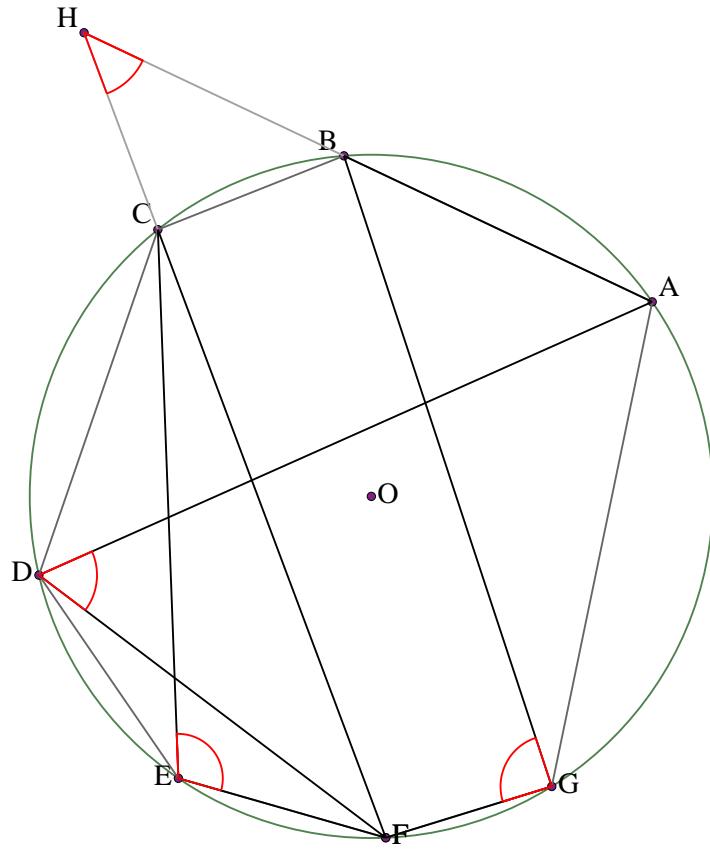
As $AFD=180-y$, $DFO=x+w-y$.

As triangle DFO is isosceles, $DOF=2y-2x-2w+180$.

As DOF is at the center of a circle on the same chord, but in the opposite direction to DEF , $DOF=360-2DEF$, so $DEF=x+w-y+90$.

But $DEF=z$, so $x+w-y+90=z$, or $x+w+90=y+z$, or $BAO+BDF+90=ACD+DEF$.

Solution to example 53



Let $ABCDEFG$ be a cyclic heptagon with center O . Let H be the intersection of BA and FC . Angle $ADF = 61^\circ$. Angle $FGB = 89^\circ$. Angle $BHC = 44^\circ$.

Find angle CEF .

As $BGFC$ is a cyclic quadrilateral, $BCF = 180^\circ - BGF$, so $BCF = 91^\circ$.

As $BCF = 91^\circ$, $BCH = 89^\circ$.

As $BCH = 89^\circ$, $CBH = 47^\circ$.

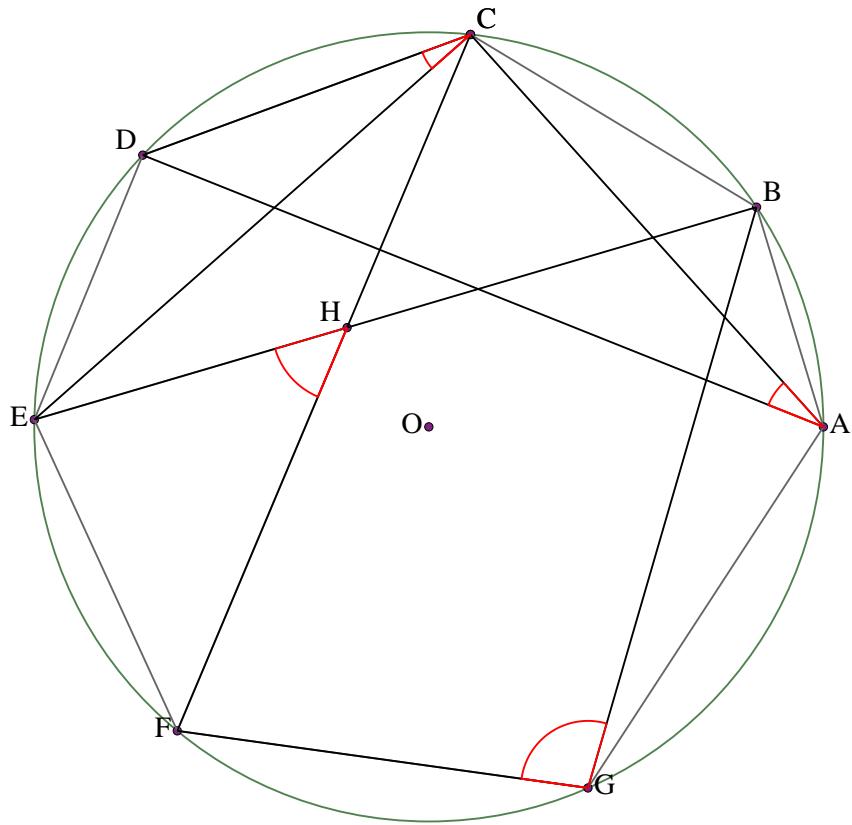
As $CBH = 47^\circ$, $CBA = 133^\circ$.

As $ABCD$ is a cyclic quadrilateral, $ADC = 180^\circ - ABC$, so $ADC = 47^\circ$.

As $ADC = 47^\circ$, $CDF = 108^\circ$.

As CDF and CEF stand on the same chord, $CEF = CDF$, so $CEF = 108^\circ$.

Solution to example 55



Let $ABCDEFG$ be a cyclic heptagon with center O . Let H be the intersection of CF and BE . Angle $FGB = 98^\circ$. Angle $DAC = 26^\circ$. Angle $FHE = 51^\circ$.

Find angle ECD .

As $BGFE$ is a cyclic quadrilateral, $BGF = 180^\circ - BGF$, so $BGF = 82^\circ$.

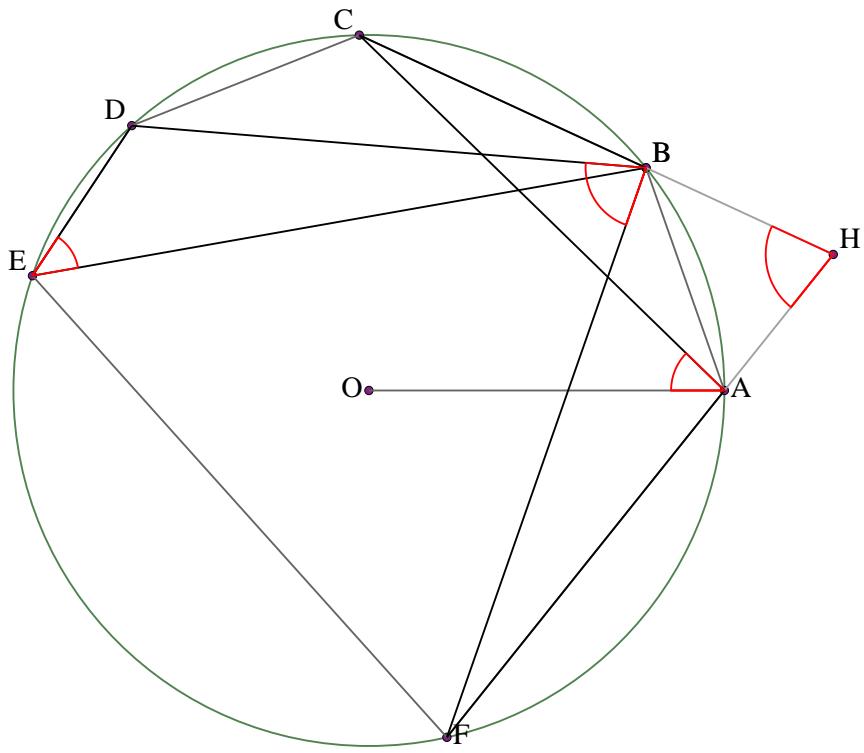
As $FEH = 82^\circ$, $EFH = 47^\circ$.

As $CFED$ is a cyclic quadrilateral, $CDE = 180^\circ - CFE$, so $CDE = 133^\circ$.

As CAD and CED stand on the same chord, $CED = CAD$, so $CED = 26^\circ$.

As $CDE = 133^\circ$, $DCE = 21^\circ$.

Solution to example 57



Let ABCDEF be a cyclic hexagon with center O. Let H be the intersection of FA and CB. Angle DEB = 47°. Angle OAC = 44°. Angle FBD = 75°.

Find angle AHB.

As triangle CAO is isosceles, $AOC=92$.

As AOC is at the center of a circle on the same chord, but in the opposite direction to ABC, $AOC=360-2ABC$, so $ABC=134$.

As $ABC=134$, $ABH=46$.

As DBFE is a cyclic quadrilateral, $DEF=180-DBF$, so $DEF=105$.

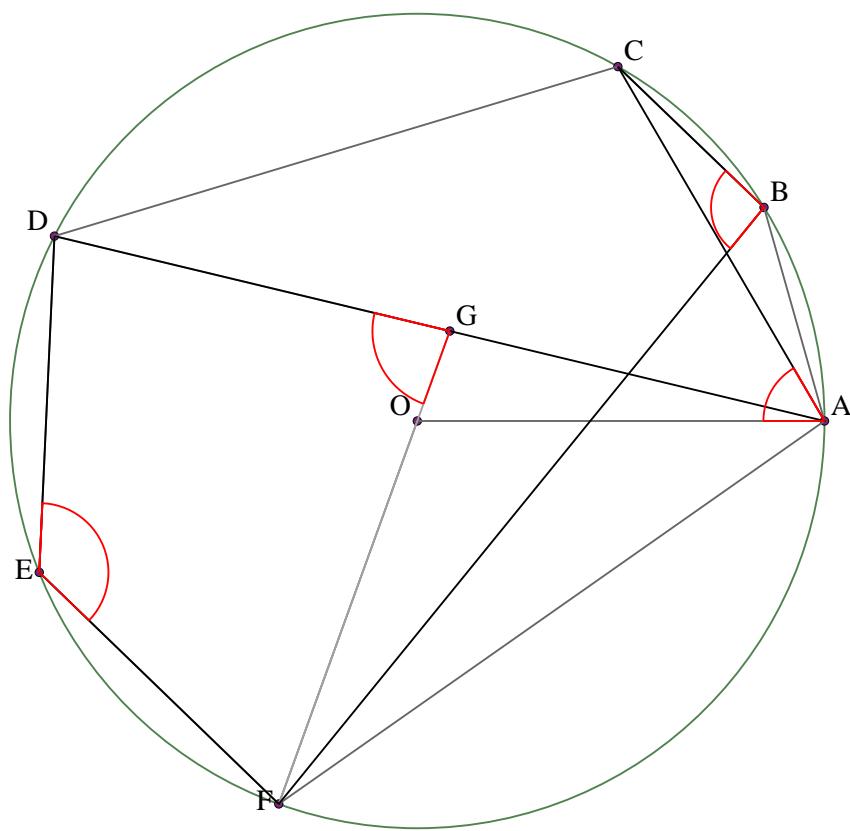
As $BED=47$, $BED=58$.

As BEFA is a cyclic quadrilateral, $BAF=180-BEF$, so $BAF=122$.

As $BAF=122$, $BAH=58$.

As $ABH=46$, $AHB=76$.

Solution to example 59



Let $ABCDEF$ be a cyclic hexagon with center O . Let G be the intersection of AD and FO . Angle $FBC = 95^\circ$. Angle $CAO = 60^\circ$. Angle $DGF = 84^\circ$.

Find angle DEF .

As CBF and CAF stand on the same chord, $CAF = CBF$, so $CAF = 95^\circ$.

As $CAO = 60^\circ$, $OAF = 35^\circ$.

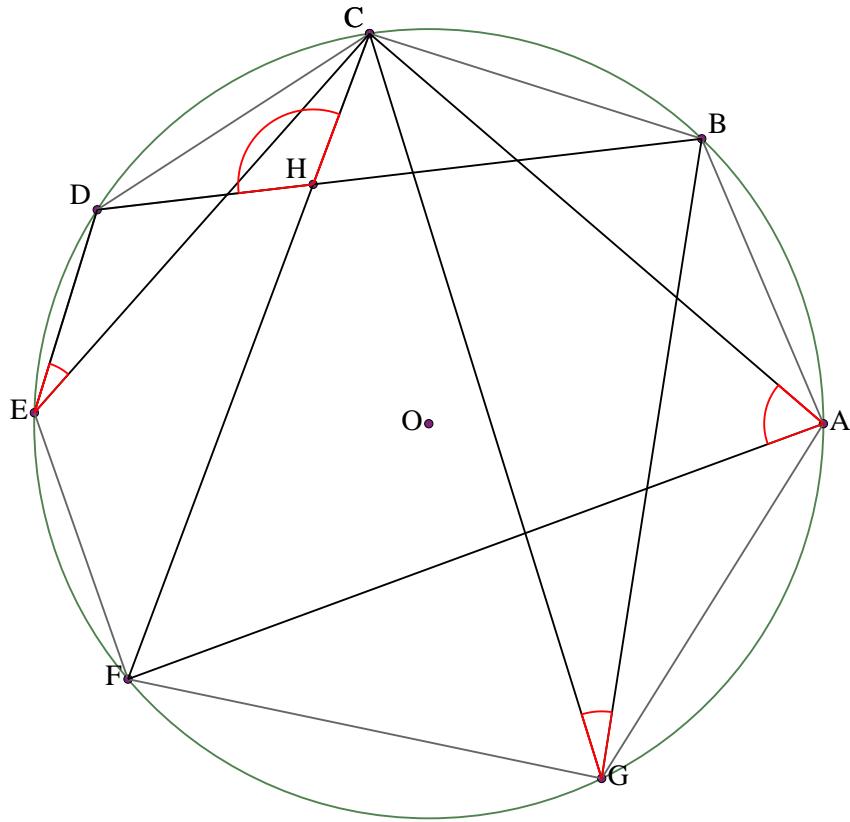
As triangle FAO is isosceles, $AFO = 35^\circ$.

As $DGF = 84^\circ$, $FGA = 96^\circ$.

As $AFG = 35^\circ$, $FAG = 49^\circ$.

As $DAFE$ is a cyclic quadrilateral, $DEF = 180^\circ - DAF$, so $DEF = 131^\circ$.

Solution to example 61



Let $ABCDEFG$ be a cyclic heptagon with center O . Let H be the intersection of FC and BD . Angle $DEC = 24^\circ$. Angle $CGB = 26^\circ$. Angle $CHD = 117^\circ$.

Find angle CAF .

As CED and CBD stand on the same chord, $CBD = CED$, so $CBD = 24$.

As $CHD = 117$, $CHB = 63$.

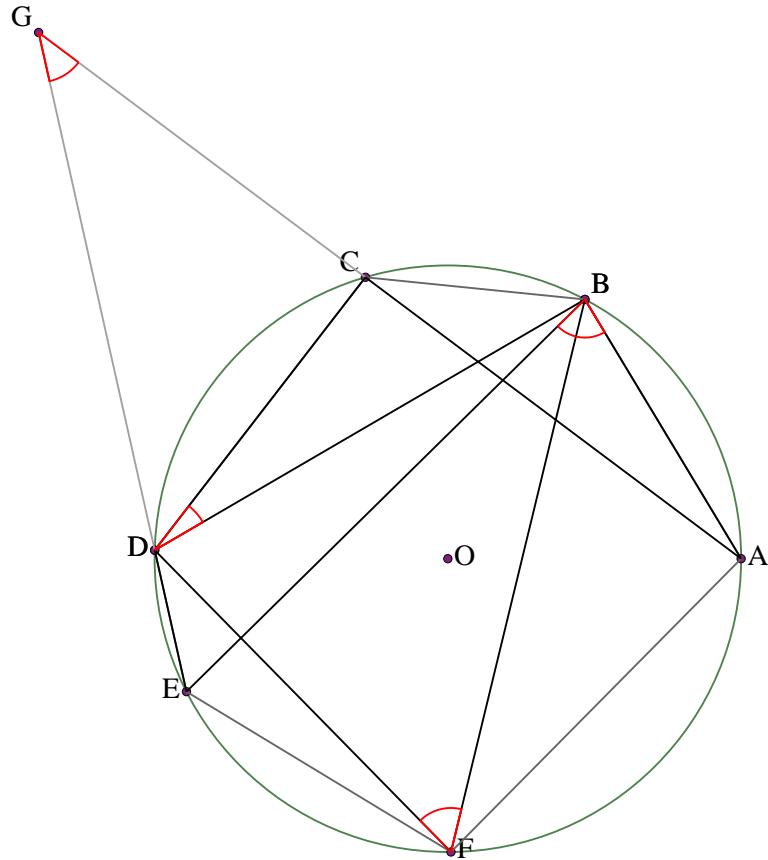
As $CBH = 24$, $BCH = 93$.

As $BCFA$ is a cyclic quadrilateral, $BAF = 180 - BCF$, so $BAF = 87$.

As BGC and BAC stand on the same chord, $BAC = BGC$, so $BAC = 26$.

As $BAF = 87$, $FAC = 61$.

Solution to example 63



Let ABCDEF be a cyclic hexagon with center O. Let G be the intersection of ED and CA. Angle BFD = 58° . Angle DGC = 41° . Angle ABE = 77° .

Find angle BDC.

Let $CDG = u$.

As $CDG = u$, $CDE = 180 - u$.

As CDEB is a cyclic quadrilateral, $CBE = 180 - CDE$, so $CBE = u$.

As $CBE = u$, $CBA = u + 77$.

As BFDC is a cyclic quadrilateral, $BCD = 180 - BFD$, so $BCD = 122$.

As $CGD = 41$, $DCG = 139 - u$.

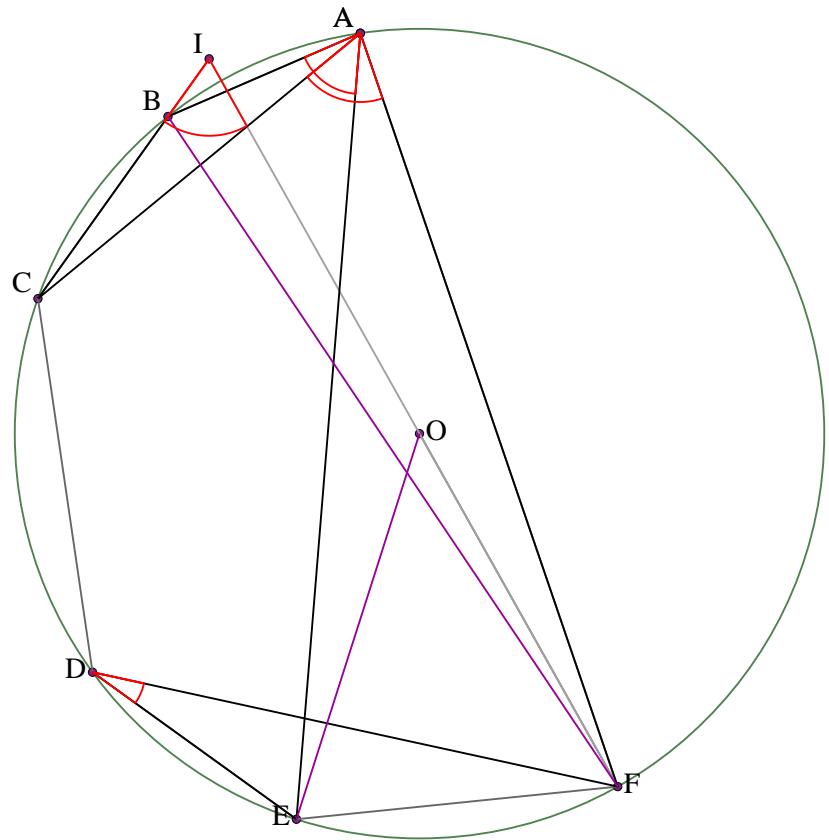
As $BCD = 122$, $BCG = u + 99$.

As $BCG = u + 99$, $BCA = 81 - u$.

As $ABC = u + 77$, $BAC = 22$.

As BAC and BDC stand on the same chord, $BDC = BAC$, so $BDC = 22$.

Solution to example 65



Let ABCDEF be a cyclic hexagon with center O. Let I be the intersection of CB and FO. Angle FDE = x . Angle EAB = y . Angle CAF = z .

Find angle BIF.

Draw lines BF and EO.

As BAE and BFE stand on the same chord, $BFE = BAE$, so $BFE = y$.

As EOF is at the center of a circle on the same chord as EDF, $EOF = 2EDF$, so $EOF = 2x$.

As triangle EOF is isosceles, $EFO = 90 - x$.

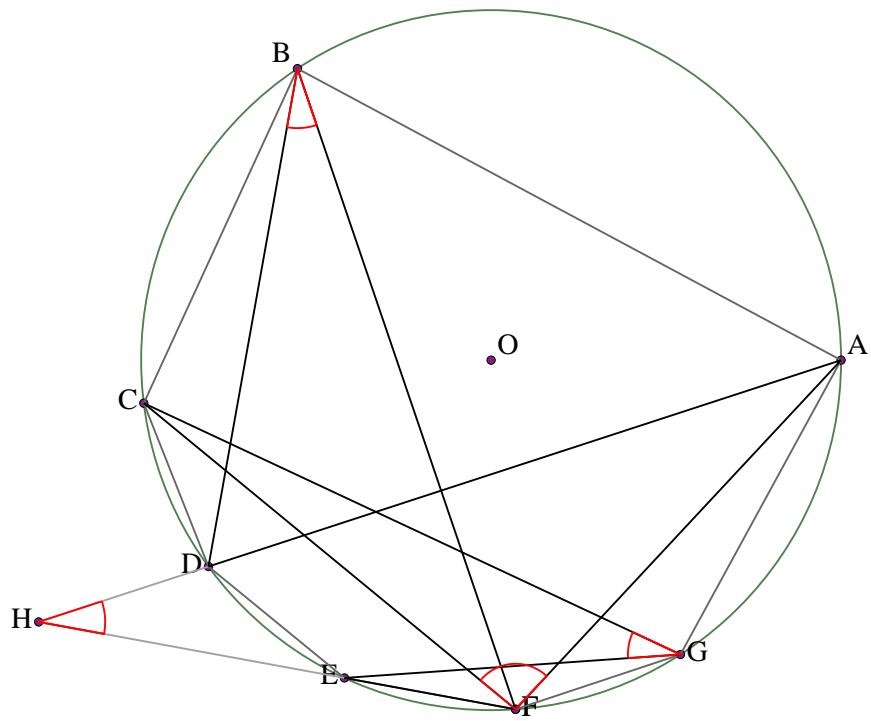
As $BFE = y$, $BFO = 90 - x - y$.

As CAF and CBF stand on the same chord, $CBF = CAF$, so $CBF = z$.

As $CBF = z$, $FBI = 180 - z$.

As $BFI = 90 - x - y$, $BIF = x + y + z - 90$.

Solution to example 67



Let $ABCDEFG$ be a cyclic heptagon with center O . Let H be the intersection of EF and DA . Angle $AFC = 94^\circ$. Angle $CGE = 29^\circ$. Angle $EHD = 28^\circ$.

Find angle FBD .

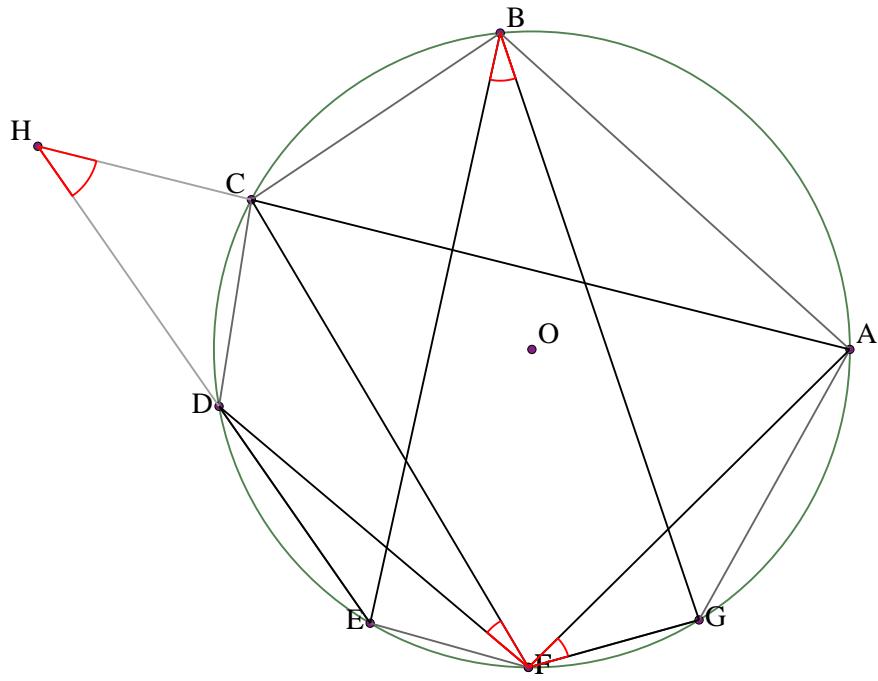
As CGE and CFE stand on the same chord, $CFE = CGE$, so $CFE = 29$.

As $AFC = 94$, $AFE = 123$.

As $AFH = 123$, $FAH = 29$.

As DAF and DBF stand on the same chord, $DBF = DAF$, so $DBF = 29$.

Solution to example 69



Let $ABCDEFG$ be a cyclic heptagon with center O . Let H be the intersection of ED and CA .

Angle $AFG = x$. Angle $GBE = y$. Angle $DHC = z$.

Find angle DFC .

As $EBGF$ is a cyclic quadrilateral, $EFG = 180 - EBG$, so $EFG = 180 - y$.

As $AFG = x$, $AFE = 180 - x - y$.

Let $CDH = u$.

As $CDH = u$, $CDE = 180 - u$.

As $CDEF$ is a cyclic quadrilateral, $CFE = 180 - CDE$, so $CFE = u$.

As $AFE = 180 - x - y$, $AFC = 180 - x - y - u$.

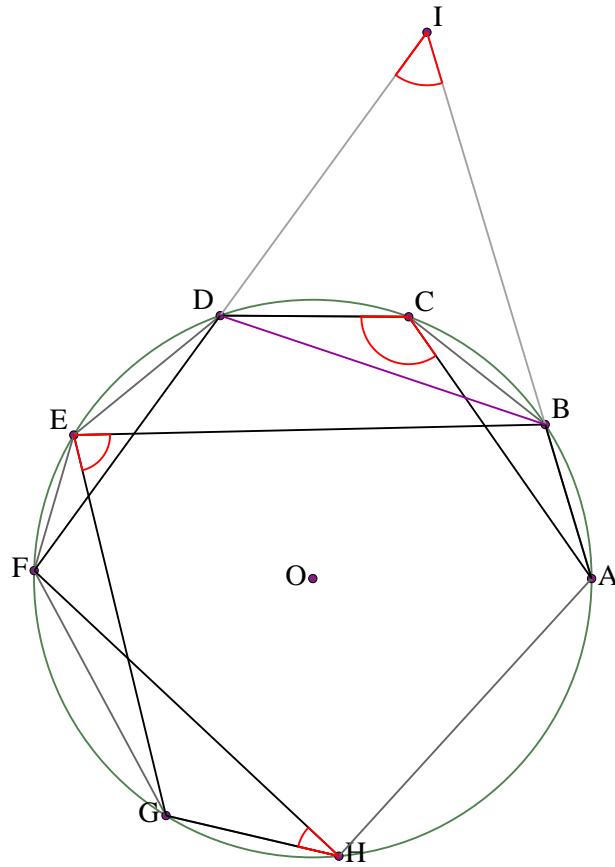
As $CHD = z$, $DCH = 180 - z - u$.

As $DCH = 180 - z - u$, $DCA = z + u$.

As $ACDF$ is a cyclic quadrilateral, $AFD = 180 - ACD$, so $AFD = 180 - z - u$.

As $AFC = 180 - x - y - u$, $CFD = x + y - z$.

Solution to example 71



Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of FD and AB .
 Prove that $BEG+FHG+ACD = BID+180$

Draw line BD .

Let $BEG=x$. Let $FHG=y$. Let $ACD=z$. Let $BID=w$.

As ACD and ABD stand on the same chord, $ABD=ACD$, so $ABD=z$.

As $ABD=z$, $DBI=180-z$.

As $DBI=180-z$, $BDI=z-w$.

As FHG and FEG stand on the same chord, $FEG=FHG$, so $FEG=y$.

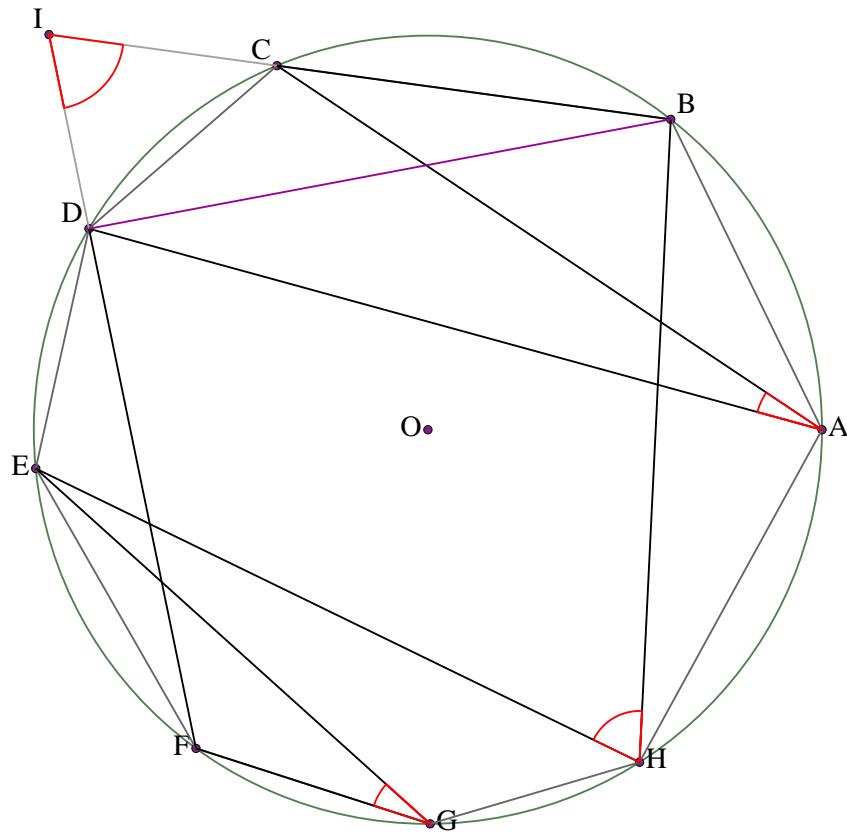
As $BEG=x$, $BEF=x+y$.

As BEF and BDF stand on the same chord, $BDF=BDF$, so $BDF=x+y$.

As $BDF=x+y$, $BDI=180-x-y$.

But $BDI=z-w$, so $180-x-y=z-w$, or $x+y+z=w+180$, or $BEG+FHG+ACD=BID+180$.

Solution to example 73



Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of FD and CB . Angle $EGF = 24^\circ$. Angle $DAC = 18^\circ$. Angle $DIC = 71^\circ$.

Find angle BHE .

Draw line BD .

As EGF and EDF stand on the same chord, $EDF = EGF$, so $EDF = 24$.

As $EDF = 24$, $EDI = 156$.

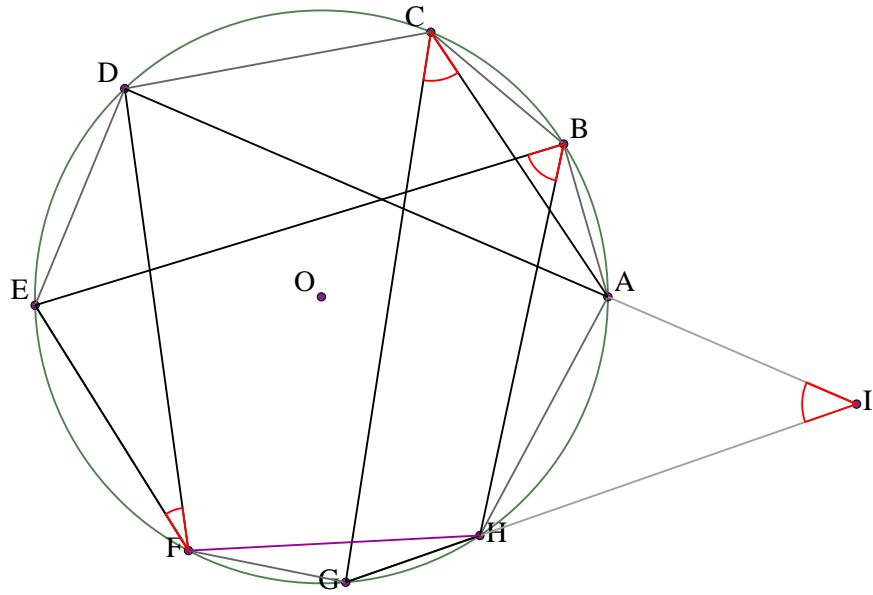
As CAD and CBD stand on the same chord, $CBD = CAD$, so $CBD = 18$.

As $DBI = 18$, $BDI = 91$.

As $EDI = 156$, $EDB = 113$.

As $BDEH$ is a cyclic quadrilateral, $BHE = 180 - BDE$, so $BHE = 67$.

Solution to example 75



Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of DA and GH .
 Prove that $EBH+DFE = ACG+AIH$

Draw line FH .

Let $EBH=x$. Let $DFE=y$. Let $ACG=z$. Let $AIH=w$.

As $ACGH$ is a cyclic quadrilateral, $AHG=180-ACG$, so $AHG=180-z$.

As $AHG=180-z$, $AHI=z$.

As $AHI=z$, $HAI=180-z-w$.

As $EBHF$ is a cyclic quadrilateral, $EFH=180-EBH$, so $EFH=180-x$.

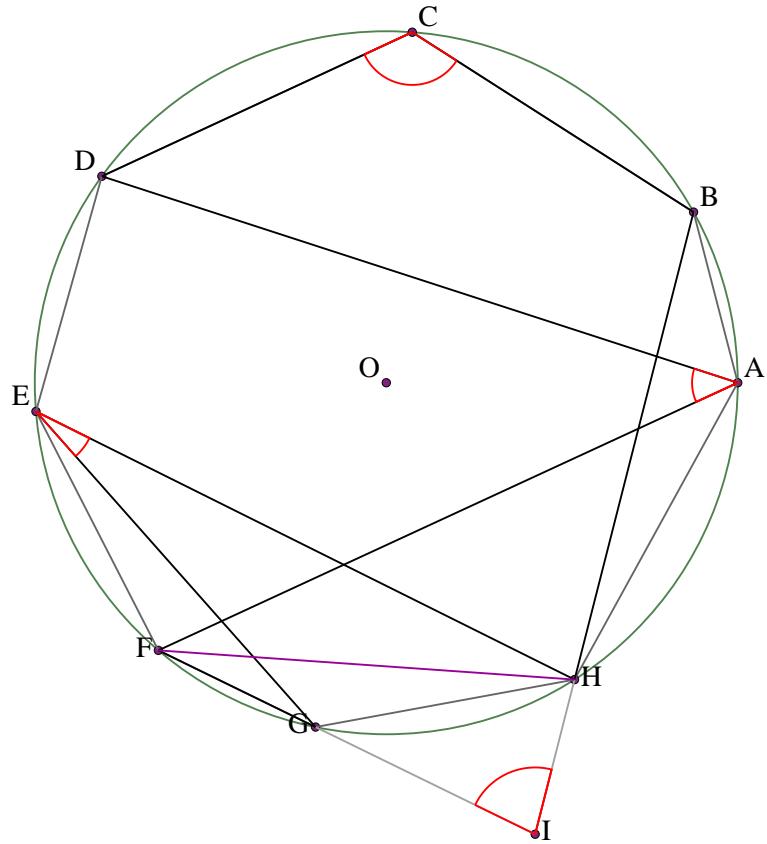
As $DFE=y$, $DFH=180-x-y$.

As $DFHA$ is a cyclic quadrilateral, $DAH=180-DFH$, so $DAH=x+y$.

As $DAH=x+y$, $HAI=180-x-y$.

But $HAI=180-z-w$, so $180-x-y=180-z-w$, or $z+w=x+y$, or $ACG+AIH=EBH+DFE$.

Solution to example 77



Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of BH and GF .
 Angle $FAD = x$. Angle $HEG = y$. Angle $HIG = z$.
 Find angle DCB .

Draw line FH .

As GEH and GFH stand on the same chord, $GFH = GEH$, so $GFH = y$.

As $HFI = y$, $FHI = 180 - y - z$.

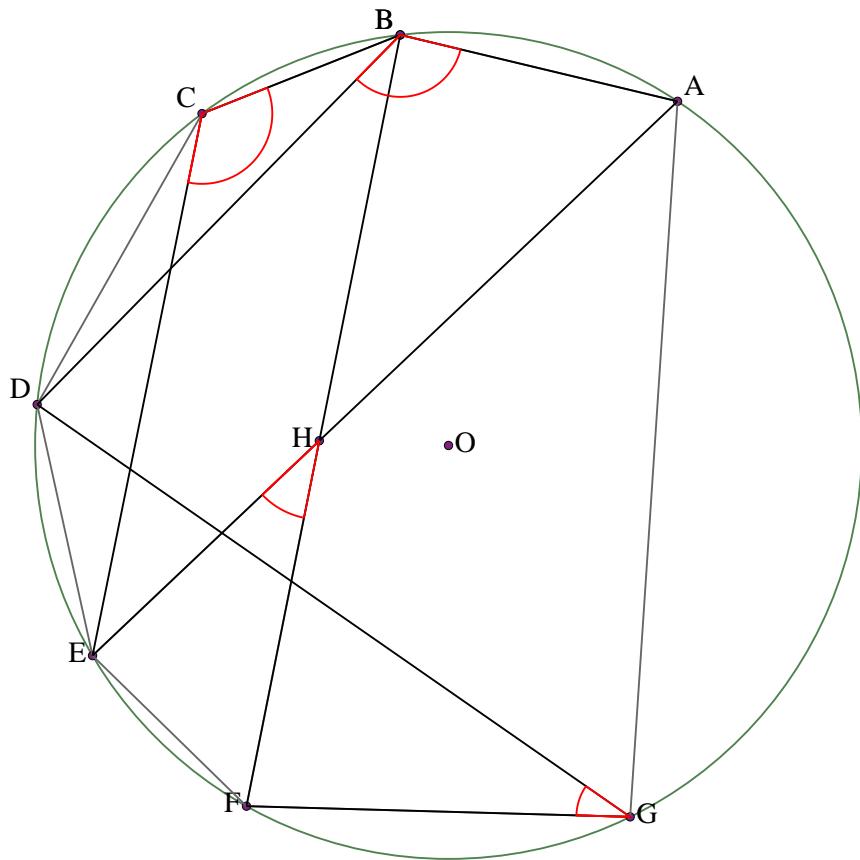
As $FHI = 180 - y - z$, $FHB = y + z$.

As BHF and BAF stand on the same chord, $BAF = BHF$, so $BAF = y + z$.

As $BAF = y + z$, $BAD = y + z - x$.

As $BADC$ is a cyclic quadrilateral, $BCD = 180 - BAD$, so $BCD = x - y - z + 180$.

Solution to example 79



Let $ABCDEFG$ be a cyclic heptagon with center O . Let H be the intersection of AE and BF .
 Prove that $DGF+BCE = ABD+EHF$

Let $DGF=x$. Let $ABD=y$. Let $BCE=z$. Let $EHF=w$.

Let $FEH=u$.

As $EHF=w$, $EFH=180-w-u$.

As $BCEF$ is a cyclic quadrilateral, $BFE=180-BCE$, so $BFE=180-z$.

But $EFH=180-w-u$, so $180-z=180-w-u$, or $w+u=z$.

As $ABDG$ is a cyclic quadrilateral, $AGD=180-ABD$, so $AGD=180-y$.

As $DGF=x$, $FGA=x-y+180$.

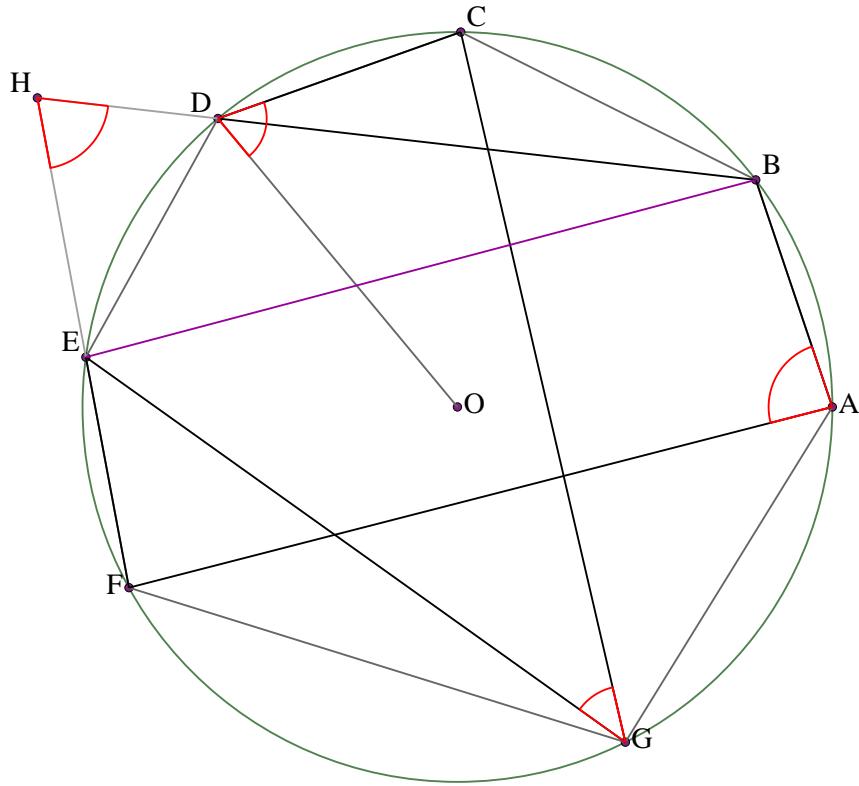
As $AGFE$ is a cyclic quadrilateral, $AEF=180-AGF$, so $AEF=y-x$.

But $AEF=u$, so $y-x=u$, or $y=x+u$.

We have these equations: $z-w-u=0$ (E1), $x+u-y=0$ (E2).

Hence $x+z-y-w=0$ (E1+E2), or $x+z=y+w$, or $DGF+BCE=ABD+EHF$.

Solution to example 81



Let $ABCDEFG$ be a cyclic heptagon with center O . Let H be the intersection of EF and BD .

Angle $ODC = x$. Angle $FAB = y$. Angle $EHD = z$.

Find angle CGE .

Draw line BE .

As $BAFE$ is a cyclic quadrilateral, $BEF = 180 - BAF$, so $BEF = 180 - y$.

As $BEF = 180 - y$, $BEH = y$.

As $BEH = y$, $EBH = 180 - y - z$.

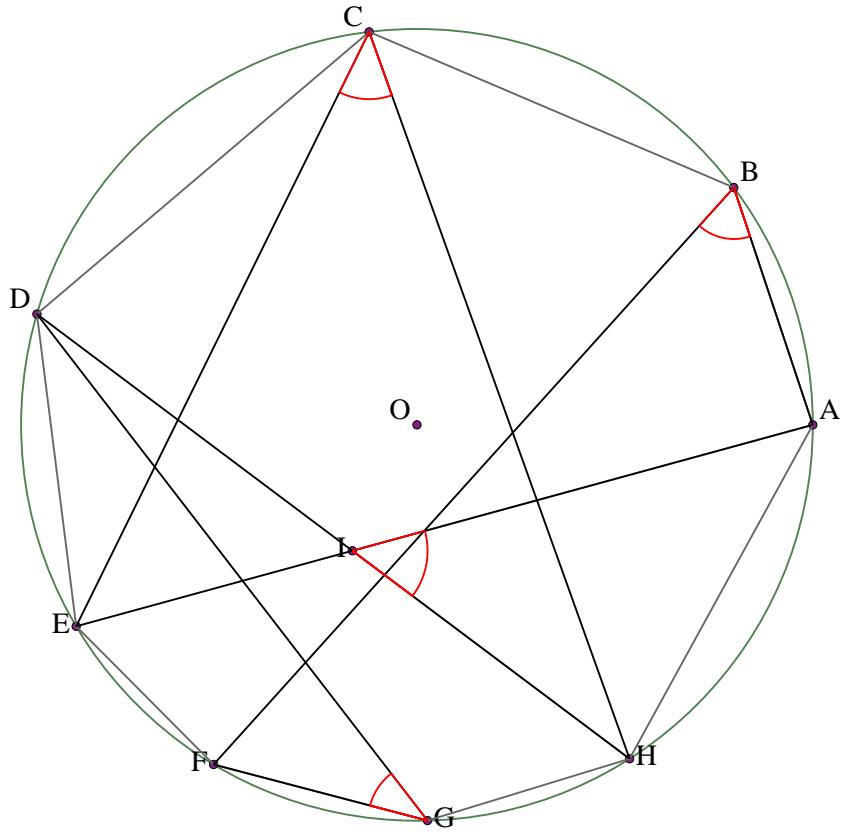
As triangle CDO is isosceles, $COD = 180 - 2x$.

As COD is at the center of a circle on the same chord as CBD , $COD = 2CBD$, so $CBD = 90 - x$.

As $EBH = 180 - y - z$, $EBC = 270 - x - y - z$.

As CBE and CGE stand on the same chord, $CGE = CBE$, so $CGE = 270 - x - y - z$.

Solution to example 83



Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of DH and EA .
 $\angle HCE = 46^\circ$. $\angle HIA = 52^\circ$. $\angle FGD = 38^\circ$.

Find angle ABF .

As $\angle ECH$ and $\angle EDH$ stand on the same chord, $\angle EDH = \angle ECH$, so $\angle EDH = 46^\circ$.

As $\angle AIH = 52^\circ$, $\angle AID = 128^\circ$.

As $\angle AID = 128^\circ$, $\angle DIE = 52^\circ$.

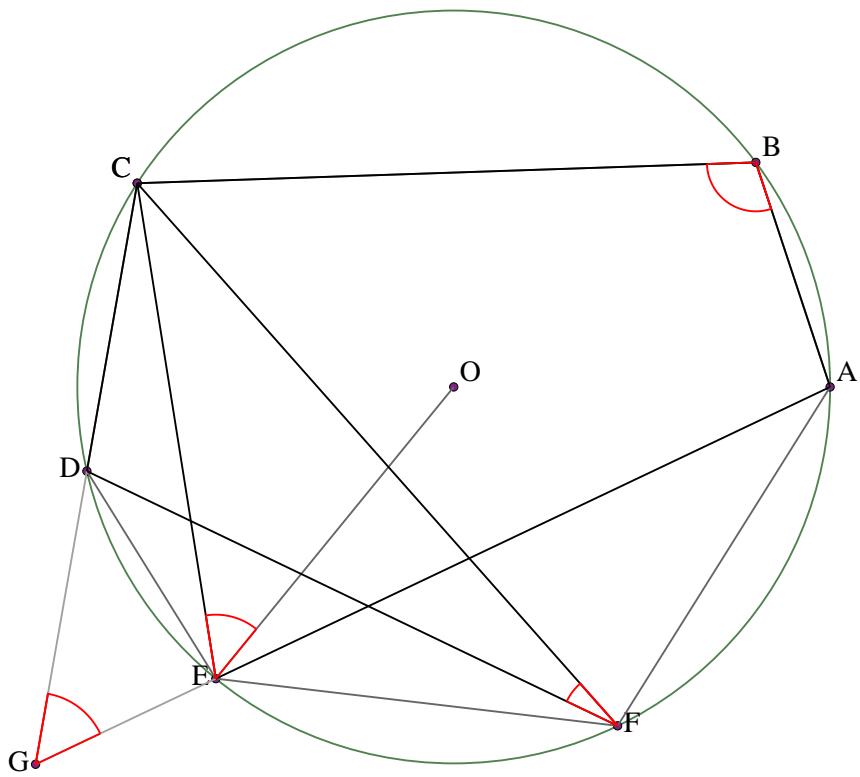
As $\angle EDI = 46^\circ$, $\angle DEI = 82^\circ$.

As $DGFE$ is a cyclic quadrilateral, $\angle DEF = 180^\circ - \angle DGF$, so $\angle DEF = 142^\circ$.

As $\angle AED = 82^\circ$, $\angle AEF = 60^\circ$.

As $\angle AEF$ and $\angle ABF$ stand on the same chord, $\angle ABF = \angle AEF$, so $\angle ABF = 60^\circ$.

Solution to example 85



Let ABCDEF be a cyclic hexagon with center O. Let G be the intersection of DC and EA. Prove that $ABC + DGE = CFD + CEO + 90^\circ$

Let $ABC = x$. Let $CFD = y$. Let $CEO = z$. Let $DGE = w$.

As ABCE is a cyclic quadrilateral, $AEC = 180^\circ - ABC$, so $AEC = 180^\circ - x$.

As $AEC = 180^\circ - x$, $CEG = x$.

As $CEG = x$, $ECG = 180^\circ - x - w$.

As CFD and CED stand on the same chord, $CED = CFD$, so $CED = y$.

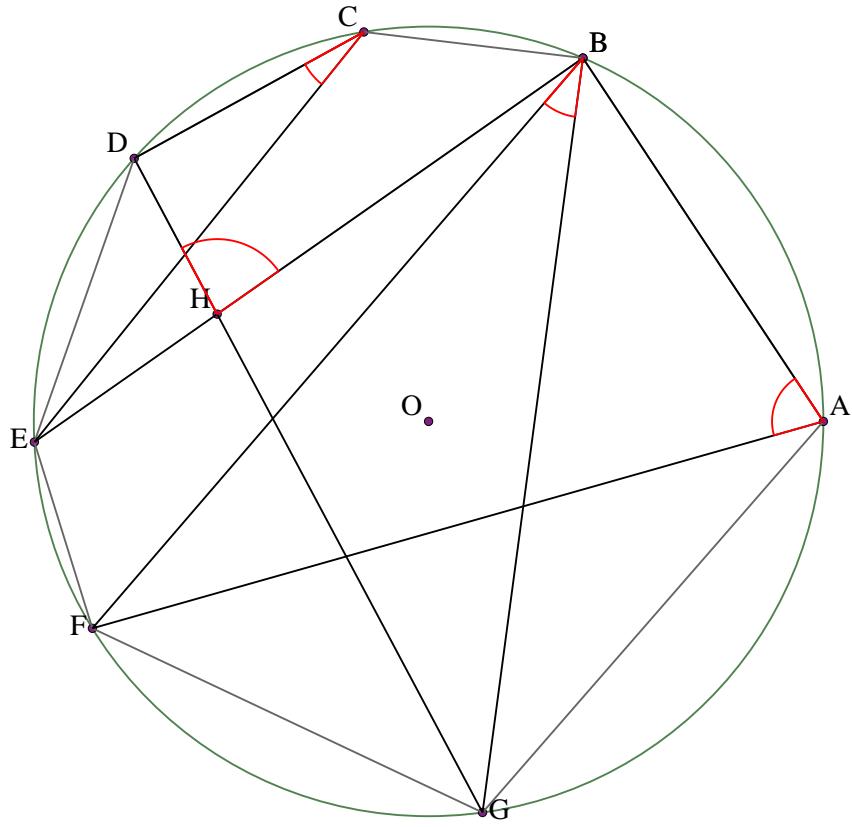
As triangle CEO is isosceles, $COE = 180^\circ - 2z$.

As COE is at the center of a circle on the same chord, but in the opposite direction to CDE , $COE = 360^\circ - 2CDE$, so $CDE = z + 90^\circ$.

As $CED = y$, $DCE = 90^\circ - y - z$.

But $ECG = 180^\circ - x - w$, so $90^\circ - y - z = 180^\circ - x - w$, or $y + z + 90^\circ = x + w$, or $CFD + CEO + 90^\circ = ABC + DGE$.

Solution to example 87



Let $ABCDEFG$ be a cyclic heptagon with center O . Let H be the intersection of GD and EB .
 Angle $DCE = x$. Angle $DHB = y$. Angle $FBG = z$.
 Find angle BAF .

Let $BGH = u$.

As $BGDC$ is a cyclic quadrilateral, $BCD = 180 - BGD$, so $BCD = 180 - u$.

As $BCD = 180 - u$, $BCE = 180 - x - u$.

As $BCEF$ is a cyclic quadrilateral, $BFE = 180 - BCE$, so $BFE = x + u$.

As $BHD = y$, $BHG = 180 - y$.

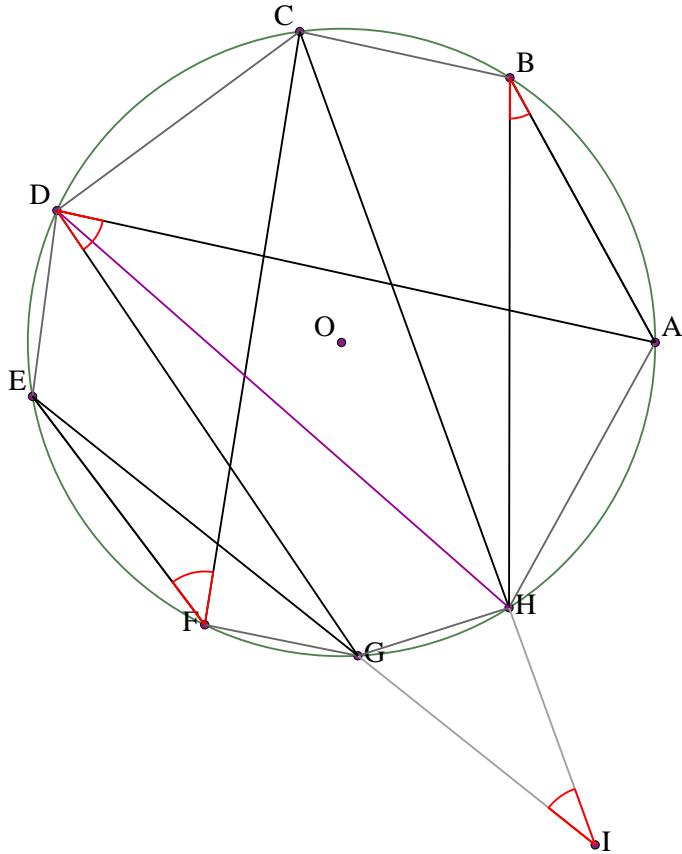
As $BHG = 180 - y$, $GBH = y - u$.

As $GBH = y - u$, $HBF = y - z - u$.

As $BFE = x + u$, $BEF = z - x - y + 180$.

As $BEFA$ is a cyclic quadrilateral, $BAF = 180 - BEF$, so $BAF = x + y - z$.

Solution to example 89



Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of GE and CH .
 $\angle HBA = 29^\circ$. $\angle EFC = 46^\circ$. $\angle GIH = 31^\circ$.

Find angle ADG .

Draw line DH .

Let $HGI = u$.

As $GIH = 31^\circ$, $GHI = 149 - u$.

As $GHI = 149 - u$, $GHC = u + 31^\circ$.

As $CHGD$ is a cyclic quadrilateral, $CDG = 180^\circ - CHG$, so $CDG = 149 - u$.

As ABH and ADH stand on the same chord, $ADH = ABH$, so $ADH = 29^\circ$.

As $HGI = u$, $HGE = 180^\circ - u$.

As $EGHD$ is a cyclic quadrilateral, $EDH = 180^\circ - EGH$, so $EDH = u$.

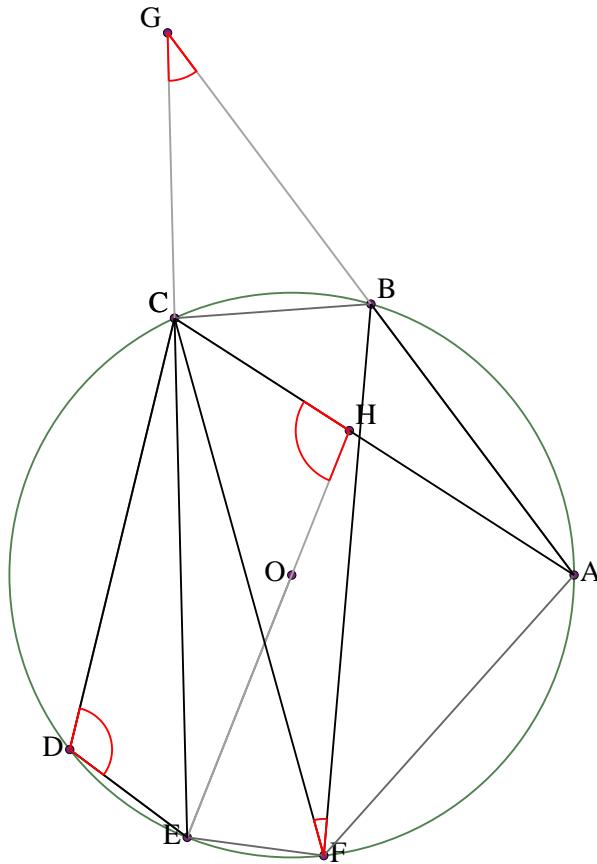
As $ADH = 29^\circ$, $ADE = u + 29^\circ$.

As $CFED$ is a cyclic quadrilateral, $CDE = 180^\circ - CFE$, so $CDE = 134^\circ$.

As $ADE = u + 29^\circ$, $ADC = 105^\circ - u$.

As $CDG = 149 - u$, $GDA = 44^\circ$.

Solution to example 91



Let ABCDEF be a cyclic hexagon with center O. Let G be the intersection of BA and EC. Let H be the intersection of AC and EO.

Angle CFB = x. Angle BGC = y. Angle CHE = z.

Find angle CDE.

As BFC and BAC stand on the same chord, $BAC = BFC$, so $BAC = x$.

As $CAG = x$, $ACG = 180 - x - y$.

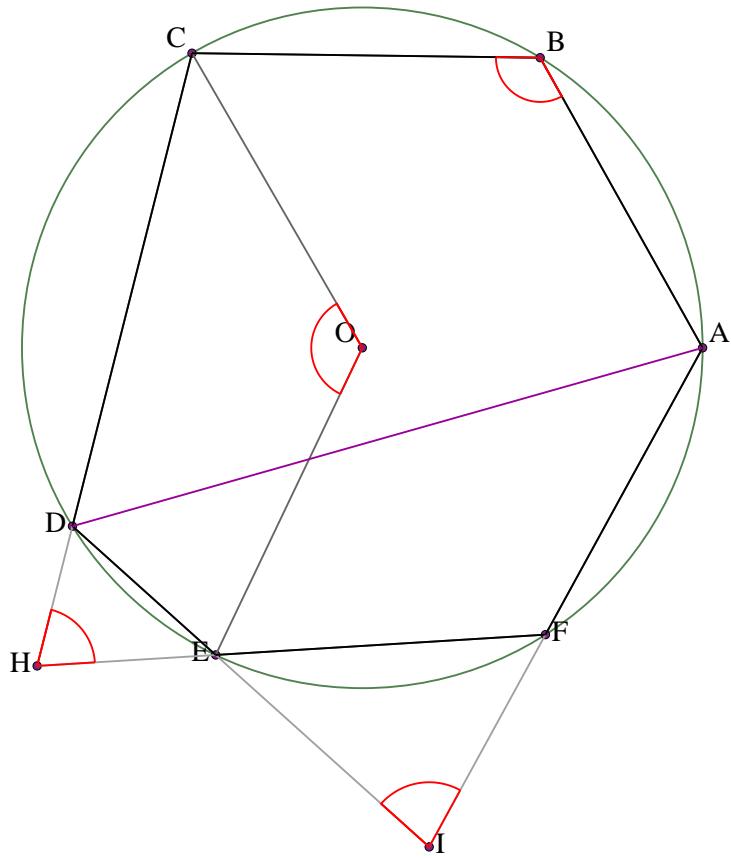
As $ACG = 180 - x - y$, $ACE = x + y$.

As $ECH = x + y$, $CEH = 180 - x - y - z$.

As triangle CEO is isosceles, $COE = 2x + 2y + 2z - 180$.

As COE is at the center of a circle on the same chord, but in the opposite direction to CDE, $COE = 360 - 2CDE$, so $CDE = 270 - x - y - z$.

Solution to example 93



Let ABCDEF be a cyclic hexagon with center O. Let H be the intersection of CD and EF. Let I be the intersection of DE and FA. Let COE = 124° . Angle DHE = 72° . Angle ABC = 120° .

Find angle EIF.

Draw line AD.

As COE is at the center of a circle on the same chord, but in the opposite direction to CDE, $COE = 360 - 2CDE$, so $CDE = 118^\circ$.

As $CDE = 118^\circ$, $EDH = 62^\circ$.

As $EDH = 62^\circ$, $DEH = 46^\circ$.

As $DEH = 46^\circ$, $DEF = 134^\circ$.

As $DEF = 134^\circ$, $FEI = 46^\circ$.

As ABCD is a cyclic quadrilateral, $ADC = 180 - ABC$, so $ADC = 60^\circ$.

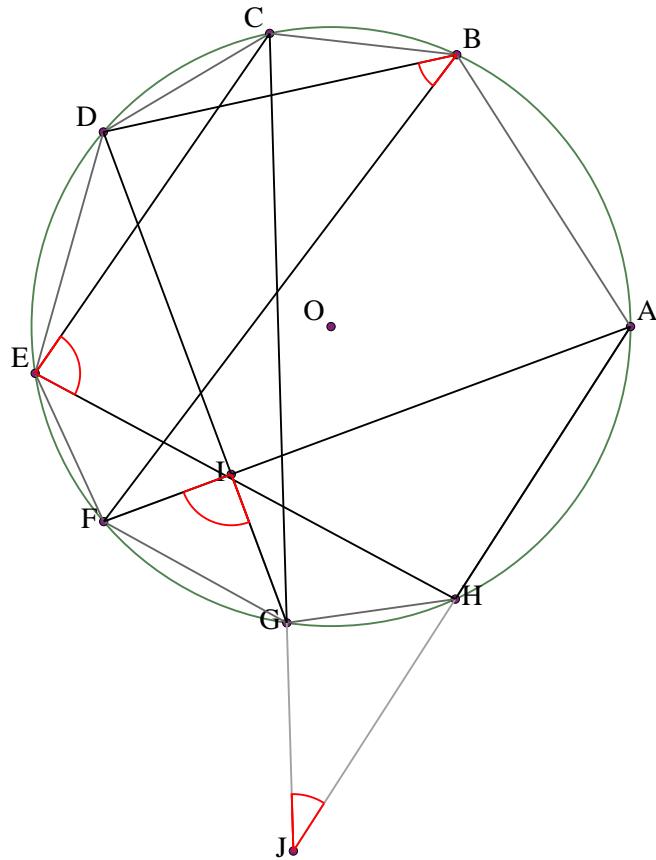
As $ADC = 60^\circ$, $ADE = 58^\circ$.

As ADEF is a cyclic quadrilateral, $AFE = 180 - ADE$, so $AFE = 122^\circ$.

As $AFE = 122^\circ$, $EFI = 58^\circ$.

As $FEI = 46^\circ$, $EIF = 76^\circ$.

Solution to example 95



Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of DG and AF . Let J be the intersection of GC and HA .

Prove that $DBF+CEH+FIG = GJH+180$

Let $DBF=x$. Let $CEH=y$. Let $FIG=z$. Let $GJH=w$.

As CEH and CGH stand on the same chord, $CGH=CEH$, so $CGH=y$.

As $CGH=y$, $HGJ=180-y$.

As $HGJ=180-y$, $GHJ=y-w$.

As $GHJ=y-w$, $GHA=w-y+180$.

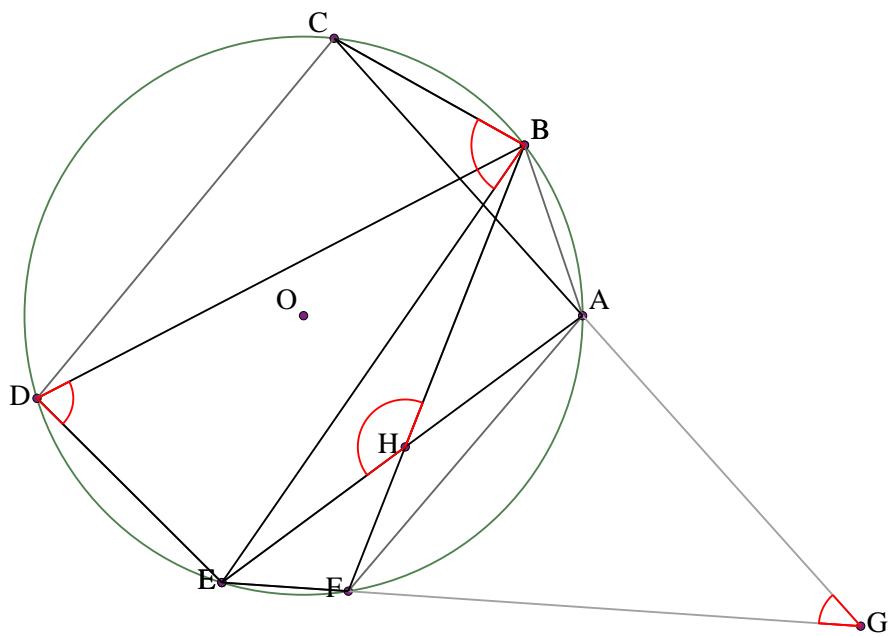
As DBF and DGF stand on the same chord, $DGF=DBF$, so $DGF=x$.

As $FGI=x$, $GFI=180-x-z$.

As AFG is a cyclic quadrilateral, $AHG=180-AGF$, so $AHG=x+z$.

But $AHG=w-y+180$, so $x+z=w-y+180$, or $x+y+z=w+180$, or $DBF+CEH+FIG=GJH+180$.

Solution to example 97



Let ABCDEF be a cyclic hexagon with center O. Let G be the intersection of EF and CA. Let H be the intersection of FB and AE.

Angle CBE = x. Angle BDE = y. Angle FGA = z.

Find angle BHE.

As CBE and CAE stand on the same chord, CAE=CBE, so CAE=x.

As CAE=x, EAG=180-x.

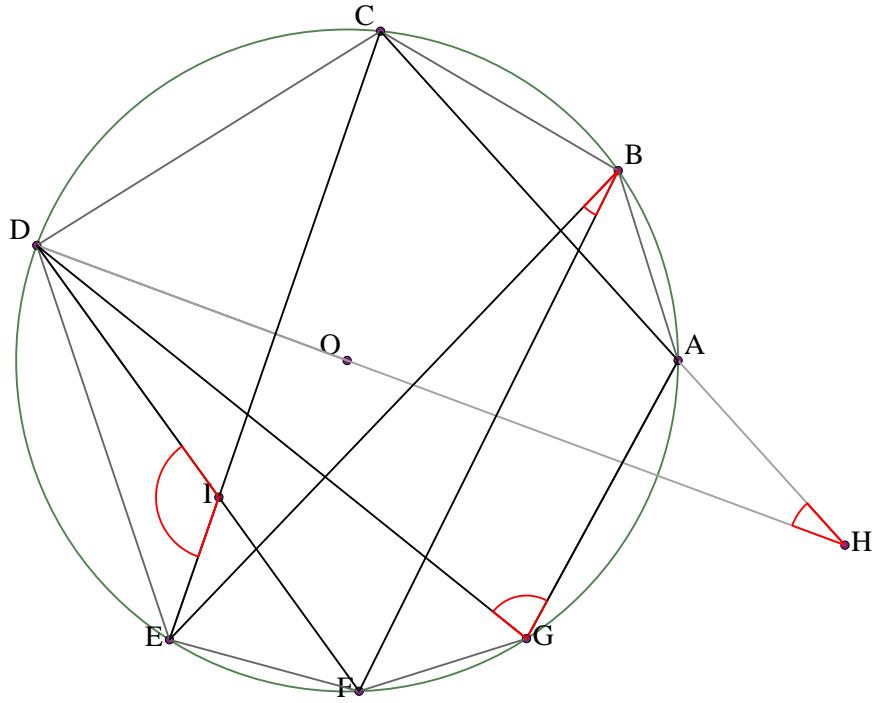
As EAG=180-x, AEG=x-z.

As BDEF is a cyclic quadrilateral, BFE=180-BDE, so BFE=180-y.

As FEH=x-z, EHF=y+z-x.

As EHF=y+z-x, EHB=x-y-z+180.

Solution to example 99



Let $ABCDEFG$ be a cyclic heptagon with center O . Let H be the intersection of AC and DO . Let I be the intersection of CE and FD .

Angle $DGA = x$. Angle $AHD = y$. Angle $EID = z$.

Find angle EBF .

As $AGDC$ is a cyclic quadrilateral, $ACD = 180 - AGD$, so $ACD = 180 - x$.

As $DCH = 180 - x$, $CDH = x - y$.

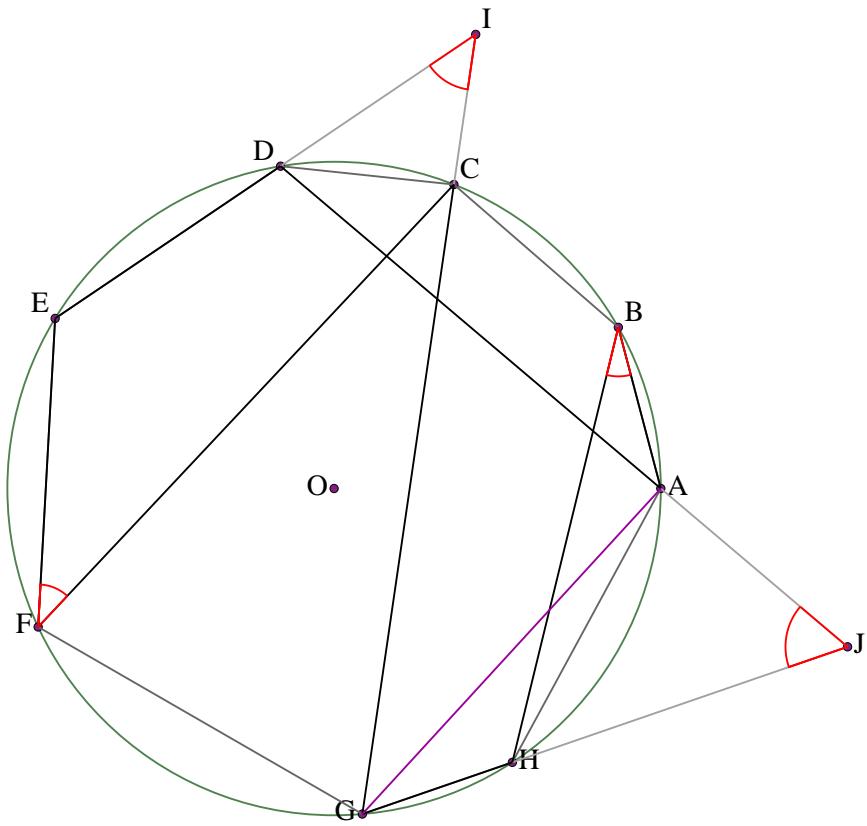
As triangle CDO is isosceles, $COD = 2y - 2x + 180$.

As COD is at the center of a circle on the same chord as CED , $COD = 2CED$, so $CED = y - x + 90$.

As $DEI = y - x + 90$, $EDI = x - y - z + 90$.

As EDF and EBF stand on the same chord, $EBF = EDF$, so $EBF = x - y - z + 90$.

Solution to example 101



Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of CG and DE . Let J be the intersection of GH and AD .

Angle HBA = 28° . Angle HJA = 59° . Angle EFC = 40° .

Find angle CID.

Draw line AG.

As ABH and AGH stand on the same chord, $AGH = ABH$, so $AGH = 28$.

As AGJ=28, GAJ=93.

As GAJ=93, GAD=87.

As DAG and DCG stand on the same chord, $DCG = DAG$, so $DCG = 87$.

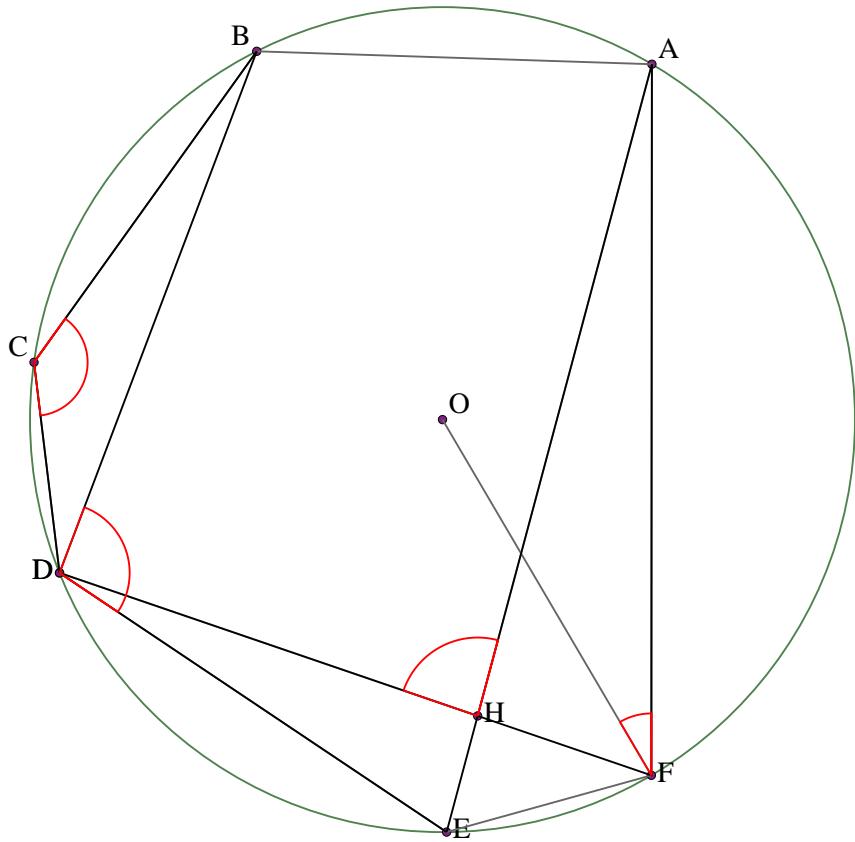
As DCG=87, DCI=93.

As CFED is a cyclic quadrilateral, $CDE = 180 - CFE$, so $CDE = 140$.

As CDE=140, CDI=40.

As DCI=93, CID=47.

Solution to example 103



Let ABCDEF be a cyclic hexagon with center O. Let H be the intersection of EA and FD. Prove that $BCD + AHD = AFO + BDE + 90^\circ$

Let $BCD = x$. Let $AFO = y$. Let $BDE = z$. Let $AHD = w$.

Let $DEH = u$.

As AED and AFD stand on the same chord, $AFD = AED$, so $AFD = u$.

As $AFD = u$, $DFO = u - y$.

As triangle DFO is isosceles, $FDO = u - y$.

As $AHD = w$, $DHE = 180^\circ - w$.

As $DHE = 180^\circ - w$, $EDH = w - u$.

As $EDH = w - u$, $HDB = z + u - w$.

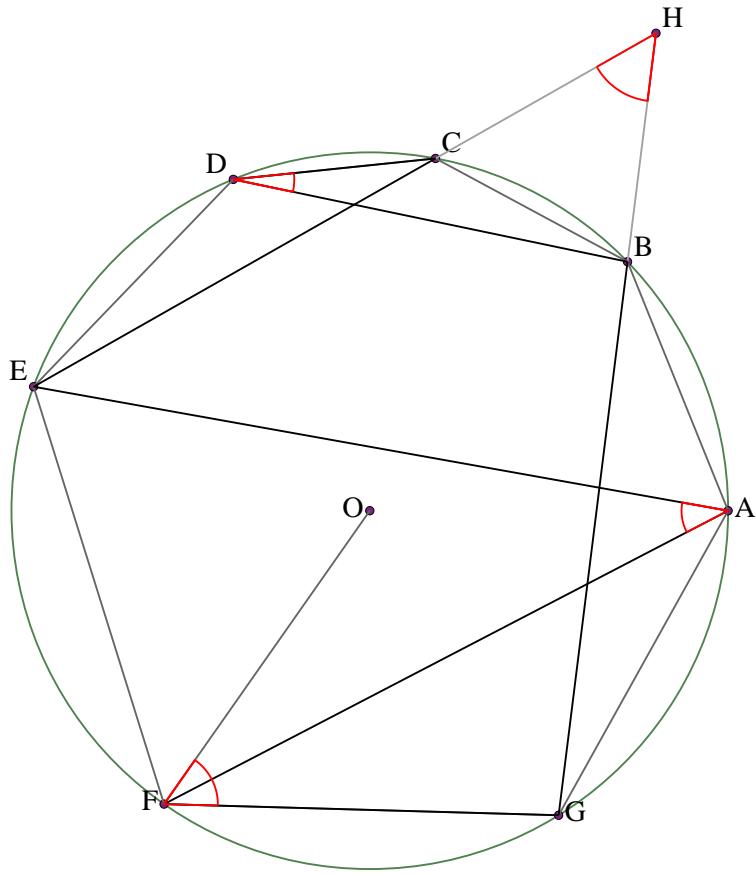
As $FDO = u - y$, $ODB = y + z - w$.

As triangle BDO is isosceles, $BOD = 2w - 2y - 2z + 180^\circ$.

As BOD is at the center of a circle on the same chord, but in the opposite direction to BCD , $BOD = 360^\circ - 2BCD$, so $BCD = y + z - w + 90^\circ$.

But $BCD = x$, so $y + z - w + 90^\circ = x$, or $y + z + 90^\circ = x + w$, or $AFO + BDE + 90^\circ = BCD + AHD$.

Solution to example 105



Let $ABCDEF$ be a cyclic heptagon with center O . Let H be the intersection of GB and CE .
 Prove that $GFO + BDC + BHC = EAF + 90$

Let $EAF = x$. Let $GFO = y$. Let $BDC = z$. Let $BHC = w$.

Let $CBH = u$.

As $BHC = w$, $BCH = 180 - w - u$.

As $BCH = 180 - w - u$, $BCE = w + u$.

As $BCEA$ is a cyclic quadrilateral, $BAE = 180 - BCE$, so $BAE = 180 - w - u$.

As $BAE = 180 - w - u$, $BAF = x - w - u + 180$.

As BAF and BGF stand on the same chord, $BGF = BAF$, so $BGF = x - w - u + 180$.

As triangle GFO is isosceles, $GFO = y$.

As $BGF = x - w - u + 180$, $BGO = x - y - w - u + 180$.

As triangle BGO is isosceles, $GBO = x - y - w - u + 180$.

As $CBH = u$, $CBG = 180 - u$.

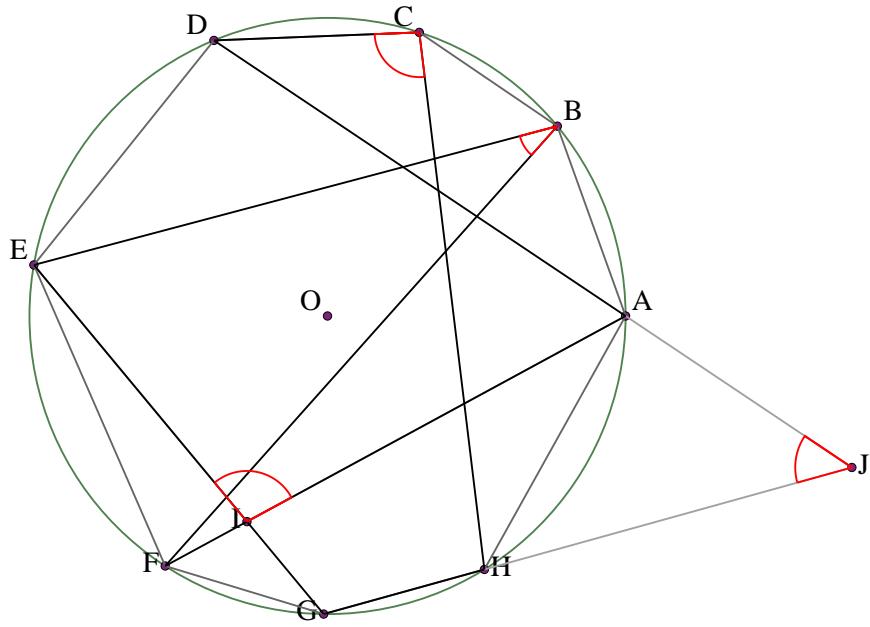
As $GBO = x - y - w - u + 180$, $OBC = y + w - x$.

As triangle CBO is isosceles, $BOC = 2x - 2y - 2w + 180$.

As BOC is at the center of a circle on the same chord as BDC , $BOC = 2BDC$, so $BDC = x - y - w + 90$.

But $BDC = z$, so $x - y - w + 90 = z$, or $x + 90 = y + z + w$, or $EAF + 90 = GFO + BDC + BHC$.

Solution to example 107



Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of FA and GE . Let J be the intersection of AD and HG .

Angle $AJH = 49^\circ$. Angle $EBF = 33^\circ$. Angle $AIE = 101^\circ$.

Find angle DCH .

As EBF and EGF stand on the same chord, $EGF = EBF$, so $EGF = 33$.

As $AIE = 101$, $EIF = 79$.

As $EIF = 79$, $FIG = 101$.

As $FGI = 33$, $GFI = 46$.

As $AFGH$ is a cyclic quadrilateral, $AHG = 180 - AFG$, so $AHG = 134$.

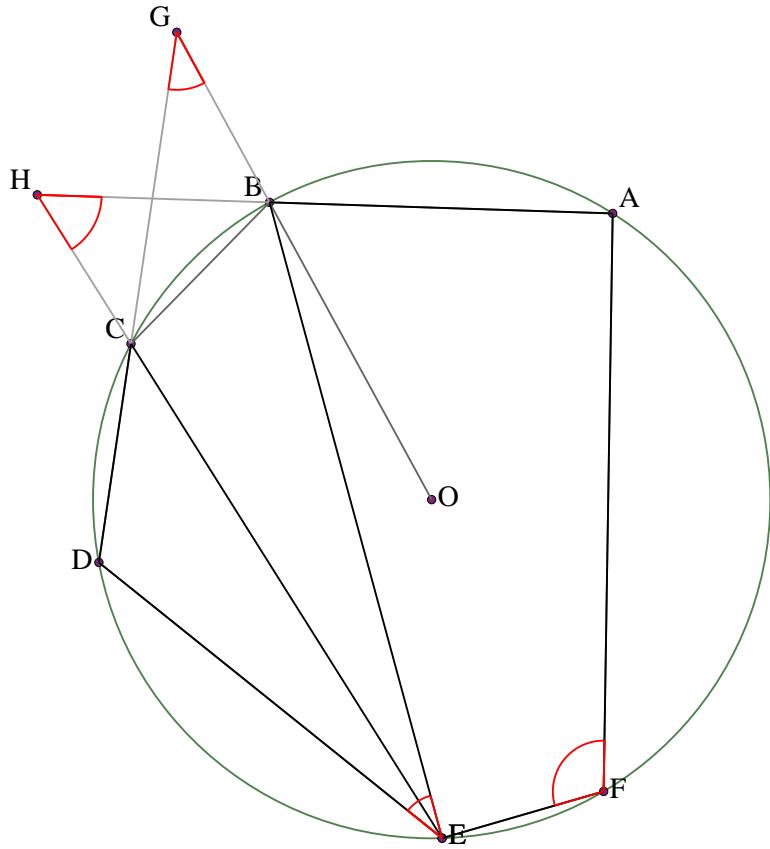
As $AHG = 134$, $AHJ = 46$.

As $AHJ = 46$, $HAJ = 85$.

As $HAJ = 85$, $HAD = 95$.

As DAH and DCH stand on the same chord, $DCH = DAH$, so $DCH = 95$.

Solution to example 109



Let ABCDEF be a cyclic hexagon with center O. Let G be the intersection of OB and CD. Let H be the intersection of BA and EC.

Prove that $AFE + BHC = BED + BGC + 90$

Let $BED = x$. Let $AFE = y$. Let $BGC = z$. Let $BHC = w$.

As $AFEB$ is a cyclic quadrilateral, $ABE = 180 - AFE$, so $ABE = 180 - y$.

As $ABE = 180 - y$, $EBH = y$.

As $EBH = y$, $BEH = 180 - y - w$.

As $BEDC$ is a cyclic quadrilateral, $BCD = 180 - BED$, so $BCD = 180 - x$.

As $BCD = 180 - x$, $BCG = x$.

As $BCG = x$, $CBG = 180 - x - z$.

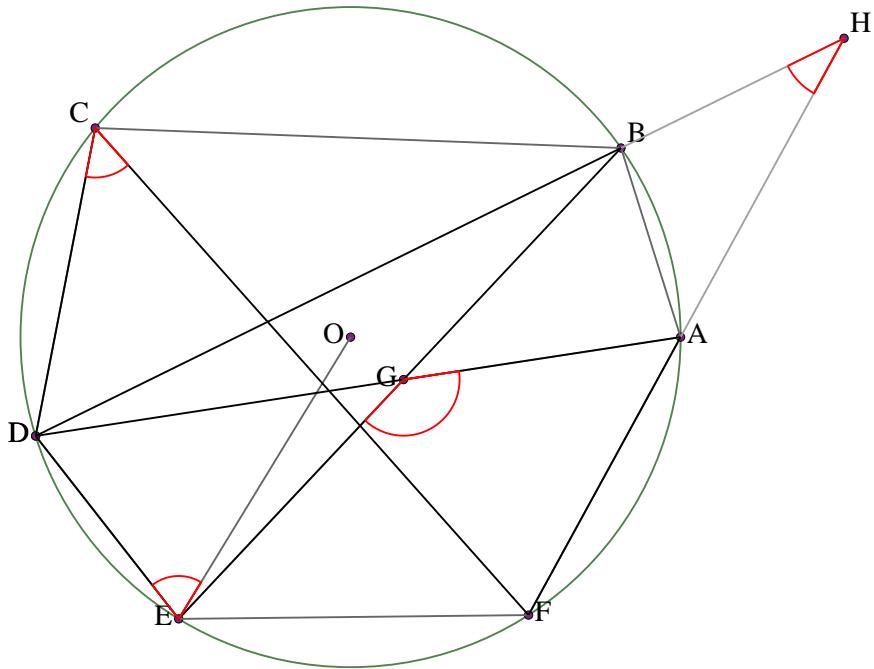
As $CBG = 180 - x - z$, $CBO = x + z$.

As triangle CBO is isosceles, $BOC = 180 - 2x - 2z$.

As BOC is at the center of a circle on the same chord as BEC , $BOC = 2BEC$, so $BEC = 90 - x - z$.

But $BEC = 180 - y - w$, so $90 - x - z = 180 - y - w$, or $x + z + 90 = y + w$, or $BED + BGC + 90 = AFE + BHC$.

Solution to example 111



Let ABCDEF be a cyclic hexagon with center O. Let G be the intersection of DA and BE. Let H be the intersection of AF and DB.

Angle OED = 69° . Angle AHB = 35° . Angle FCD = 53° .

Find angle AGE.

As triangle DEO is isosceles, $DOE=42$.

As DOE is at the center of a circle on the same chord as DBE , $DOE=2DBE$, so $DBE=21$.

Let $BAH=u$.

As $AHB=35$, $ABH=145-u$.

As $ABH=145-u$, $ABD=u+35$.

As $DBG=21$, $GBA=u+14$.

As DCF and DAF stand on the same chord, $DAF=DCF$, so $DAF=53$.

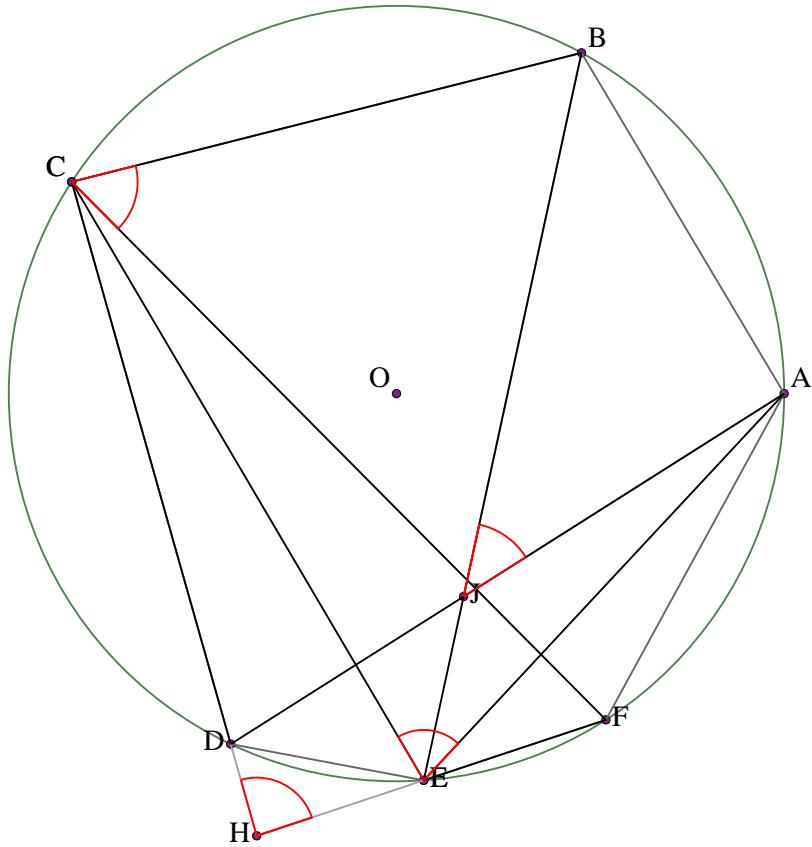
As $BAH=u$, $BAF=180-u$.

As $FAG=53$, $GAB=127-u$.

As $ABG=u+14$, $AGB=39$.

As $AGB=39$, $AGE=141$.

Solution to example 113



Let ABCDEF be a cyclic hexagon with center O. Let H be the intersection of EF and CD. Let J be the intersection of EB and DA.

Prove that $DHE + AJB = AEC + BCF$

Let $AEC = x$. Let $DHE = y$. Let $BCF = z$. Let $AJB = w$.

Let $ABJ = u$.

As ABE and ADE stand on the same chord, $ADE = ABE$, so $ADE = u$.

As AEC and ADC stand on the same chord, $ADC = AEC$, so $ADC = x$.

As $ADC = x$, $ADH = 180 - x$.

As $ADE = u$, $EDH = 180 - x - u$.

As BCF and BEF stand on the same chord, $BEF = BCF$, so $BEF = z$.

As $BEF = z$, $BEH = 180 - z$.

As $AJB = w$, $BAJ = 180 - w - u$.

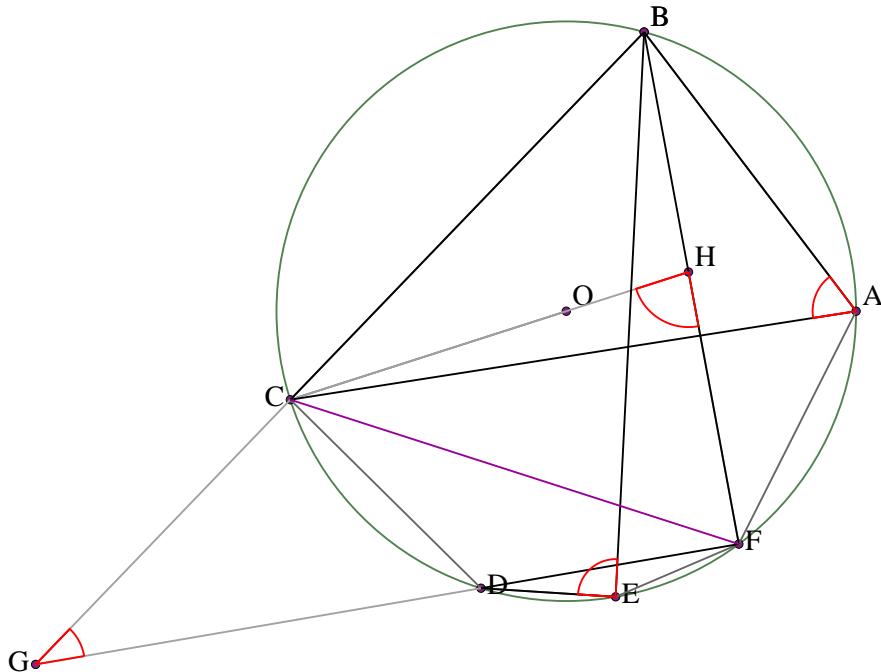
As BAD and BED stand on the same chord, $BED = BAD$, so $BED = 180 - w - u$.

As $BEH = 180 - z$, $HED = w + u - z$.

As $EDH = 180 - x - u$, $DHE = x + z - w$.

But $DHE = y$, so $x + z - w = y$, or $x + z = y + w$, or $AEC + BCF = DHE + AJB$.

Solution to example 115



Let ABCDEF be a cyclic hexagon with center O. Let G be the intersection of BC and FD. Let H be the intersection of OC and BF.

Angle CAB = x. Angle CGD = y. Angle CHF = z.

Find angle DEB.

Draw line CF.

As BAC and BFC stand on the same chord, BFC=BAC, so BFC=x.

As CFH=x, FCH=180-x-z.

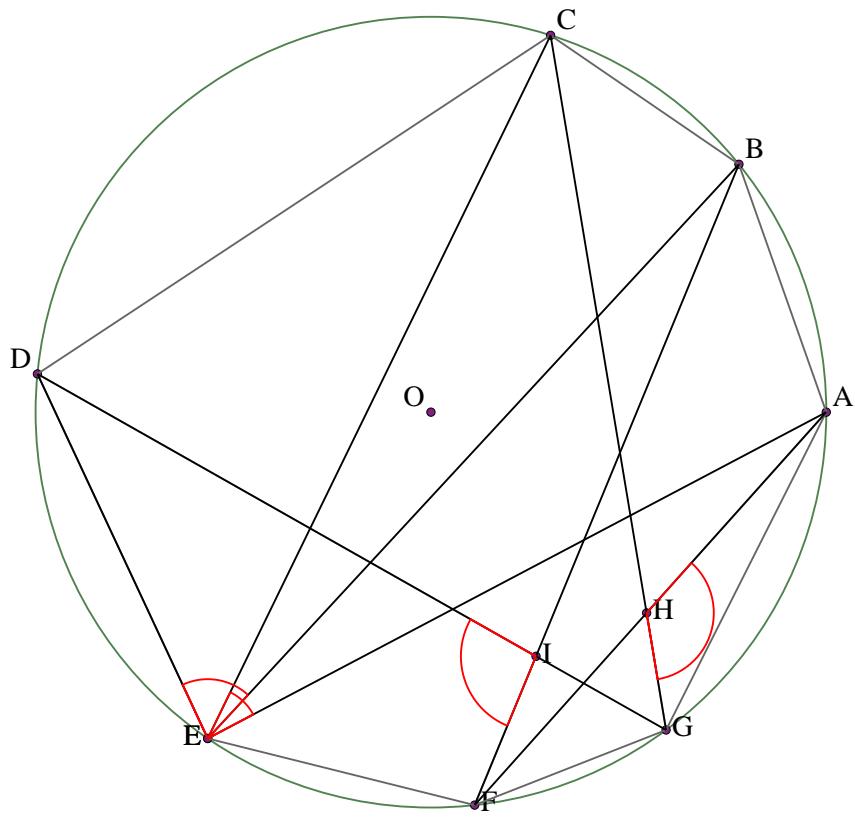
As triangle FCO is isosceles, COF=2x+2z-180.

As COF is at the center of a circle on the same chord as CBF, COF=2CBF, so CBF=x+z-90.

As FBG=x+z-90, BFG=270-x-y-z.

As BFD and BED stand on the same chord, BED=BFD, so BED=270-x-y-z.

Solution to example 117



Let $ABCDEF$ be a cyclic heptagon with center O . Let H be the intersection of CG and FA . Let I be the intersection of GD and BF .

Angle $DEB = 68^\circ$. Angle $DIF = 97^\circ$. Angle $GHA = 129^\circ$.

Find angle AEC .

Let $FGI = u$.

As $DGFE$ is a cyclic quadrilateral, $DEF = 180 - DGF$, so $DEF = 180 - u$.

As $DEF = 180 - u$, $FEB = 112 - u$.

As $BEFA$ is a cyclic quadrilateral, $BAF = 180 - BEF$, so $BAF = u + 68$.

As $DIF = 97$, $FIG = 83$.

As $FIG = 83$, $GFI = 97 - u$.

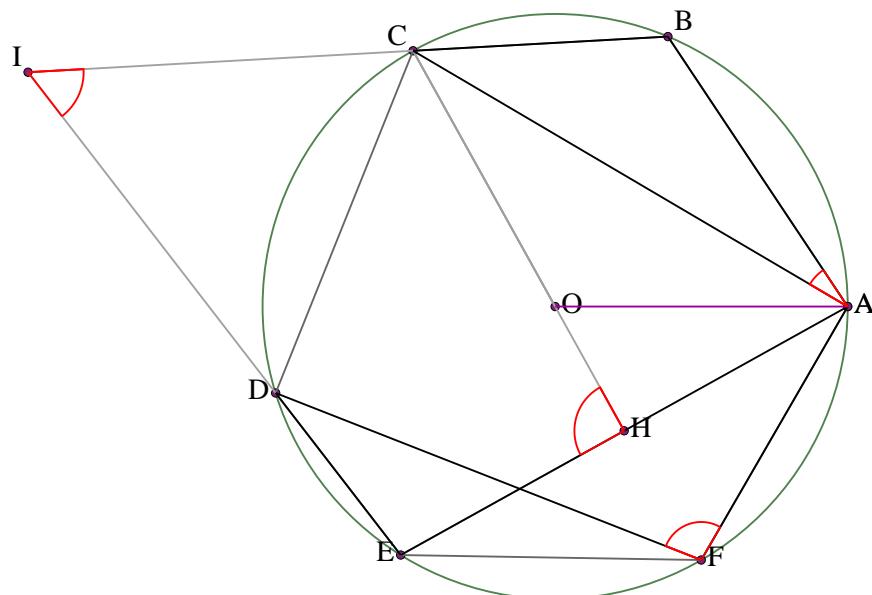
As $BFGA$ is a cyclic quadrilateral, $BAG = 180 - BFG$, so $BAG = u + 83$.

As $BAH = u + 68$, $HAG = 15$.

As $GAH = 15$, $AGH = 36$.

As AGC and AEC stand on the same chord, $AEC = AGC$, so $AEC = 36$.

Solution to example 119



Let ABCDEF be a cyclic hexagon with center O. Let H be the intersection of OC and AE. Let I be the intersection of CB and ED.

Angle DFA = 99° . Angle CAB = 26° . Angle CID = 56° .

Find angle CHE.

Draw line AO.

As AFDC is a cyclic quadrilateral, $ACD = 180 - AFD$, so $ACD = 81$.

Let $DCI = u$.

As $DCI = u$, $DCB = 180 - u$.

As $ACD = 81$, $ACB = 99 - u$.

As $ACB = 99 - u$, $ABC = u + 55$.

As AOC is at the center of a circle on the same chord, but in the opposite direction to ABC , $AOC = 360 - 2ABC$, so $AOC = 250 - 2u$.

As triangle AOC is isosceles, $ACO = u - 35$.

As $CID = 56$, $CDI = 124 - u$.

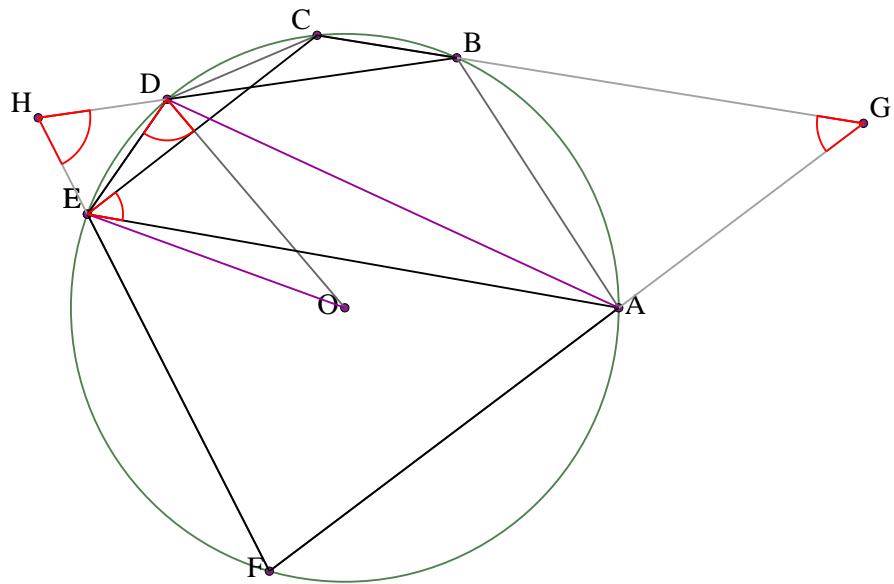
As $CDI = 124 - u$, $CDE = u + 56$.

As $CDEA$ is a cyclic quadrilateral, $CAE = 180 - CDE$, so $CAE = 124 - u$.

As $ACH = u - 35$, $AHC = 91$.

As $AHC = 91$, $CHE = 89$.

Solution to example 121



Let ABCDEF be a cyclic hexagon with center O. Let G be the intersection of CB and FA. Let H be the intersection of BD and EF.

Angle AEC = 48°. Angle BGA = 46°. Angle DHE = 71°.

Find angle ODE.

Draw lines AD and EO.

Let $EDH = u$.

As $DHE = 71$, $DEH = 109 - u$.

As $DEH = 109 - u$, $DEF = u + 71$.

As DEFA is a cyclic quadrilateral, $DAF = 180 - DEF$, so $DAF = 109 - u$.

As $DAF = 109 - u$, $DAG = u + 71$.

As $EDH = u$, $EDB = 180 - u$.

As BDEA is a cyclic quadrilateral, $BAE = 180 - BDE$, so $BAE = u$.

As AECB is a cyclic quadrilateral, $ABC = 180 - AEC$, so $ABC = 132$.

As $ABC = 132$, $ABG = 48$.

As $ABG = 48$, $BAG = 86$.

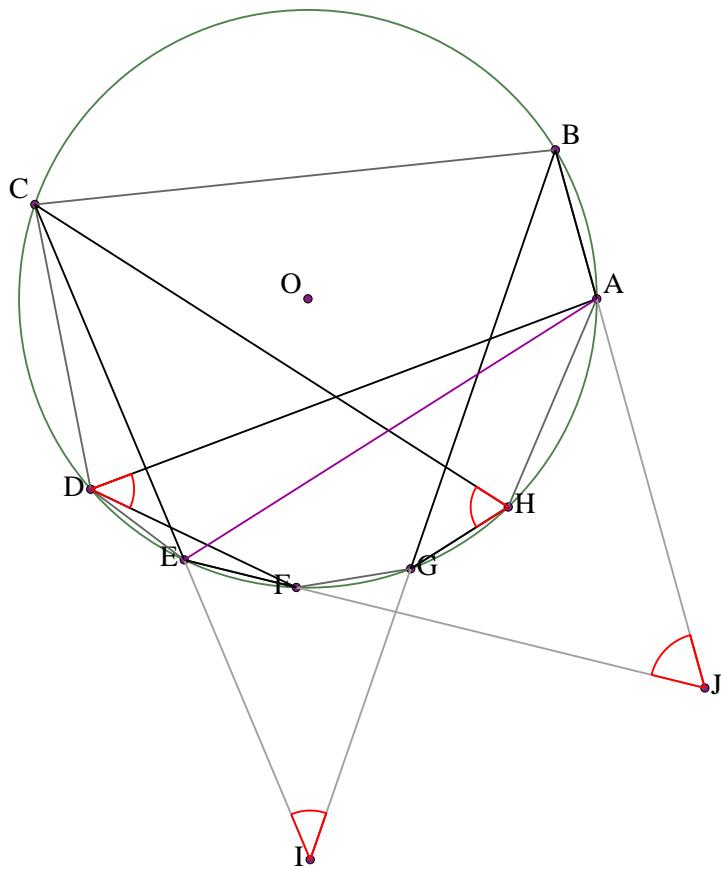
As $BAE = u$, $EAG = u + 86$.

As $DAG = u + 71$, $DAE = 15$.

As DOE is at the center of a circle on the same chord as DAE, $DOE = 2DAE$, so $DOE = 30$.

As triangle DOE is isosceles, $EDO = 75$.

Solution to example 123



Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of GB and EC . Let J be the intersection of BA and FE .

Angle $CHG = 65^\circ$. Angle $GIE = 42^\circ$. Angle $ADF = 46^\circ$.

Find angle AJF .

Draw line AE .

As CHG and CBG stand on the same chord, $CBG = CHG$, so $CBG = 65^\circ$.

As $CBI = 65^\circ$, $BCI = 73^\circ$.

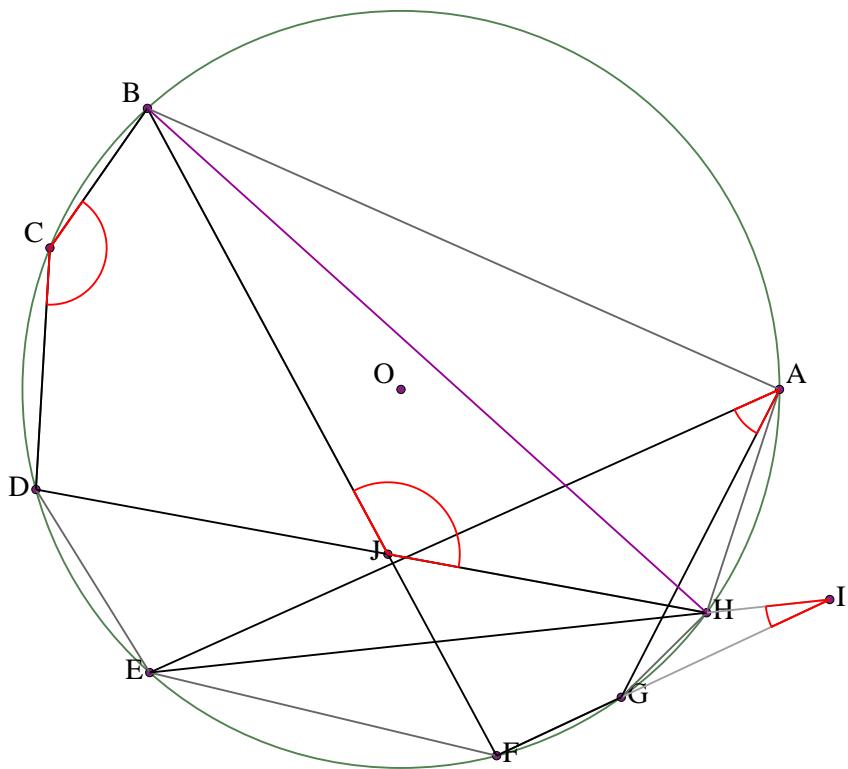
As $BCEA$ is a cyclic quadrilateral, $BAE = 180^\circ - BCE$, so $BAE = 107^\circ$.

As $BAE = 107^\circ$, $EAJ = 73^\circ$.

As ADF and AEF stand on the same chord, $AEF = ADF$, so $AEF = 46^\circ$.

As $EAJ = 73^\circ$, $AJE = 61^\circ$.

Solution to example 125



Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of GF and HE . Let J be the intersection of FB and DH .

Prove that $BCD+GIH = EAG+BJH$

Draw line BH .

Let $EAG=x$. Let $BCD=y$. Let $GIH=z$. Let $BJH=w$.

As $BCDH$ is a cyclic quadrilateral, $BHD=180-BCD$, so $BHD=180-y$.

As $BHJ=180-y$, $HBJ=y-w$.

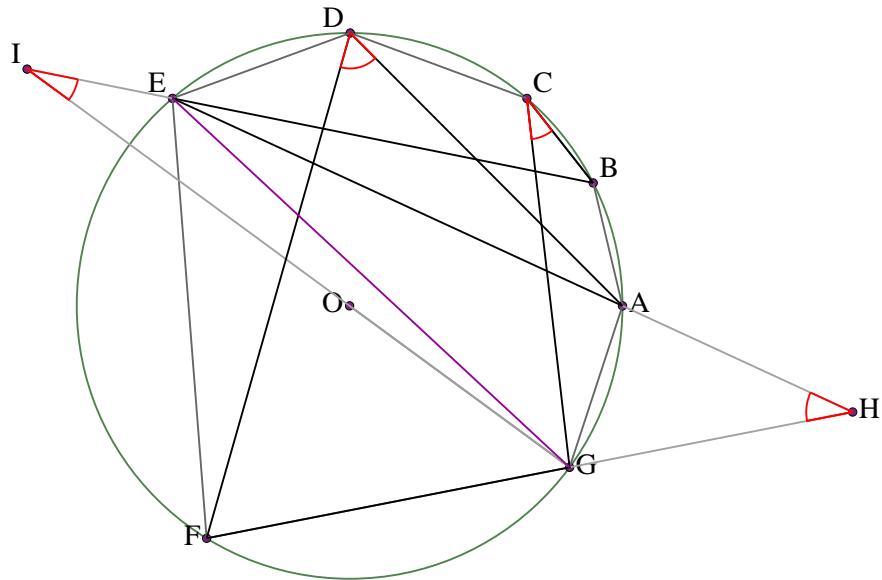
As $EAGF$ is a cyclic quadrilateral, $EFG=180-EAG$, so $EFG=180-x$.

As $EFI=180-x$, $FEI=x-z$.

As FEH and FBH stand on the same chord, $FBH=FEH$, so $FBH=x-z$.

But $FBH=y-w$, so $x-z=y-w$, or $x+w=y+z$, or $EAG+BJH=BCD+GIH$.

Solution to example 127



Let $ABCDEF$ be a cyclic heptagon with center O . Let H be the intersection of FG and EA . Let I be the intersection of OG and BE .

Prove that $ADF + AHG + EIG = BCG + 90$

Draw line EG .

Let $ADF = x$. Let $BCG = y$. Let $AHG = z$. Let $EIG = w$.

As ADF and AEF stand on the same chord, $AEF = ADF$, so $AEF = x$.

As $FEH = x$, $EFH = 180 - x - z$.

As BCG and BEG stand on the same chord, $BEG = BCG$, so $BEG = y$.

As $BEG = y$, $GEI = 180 - y$.

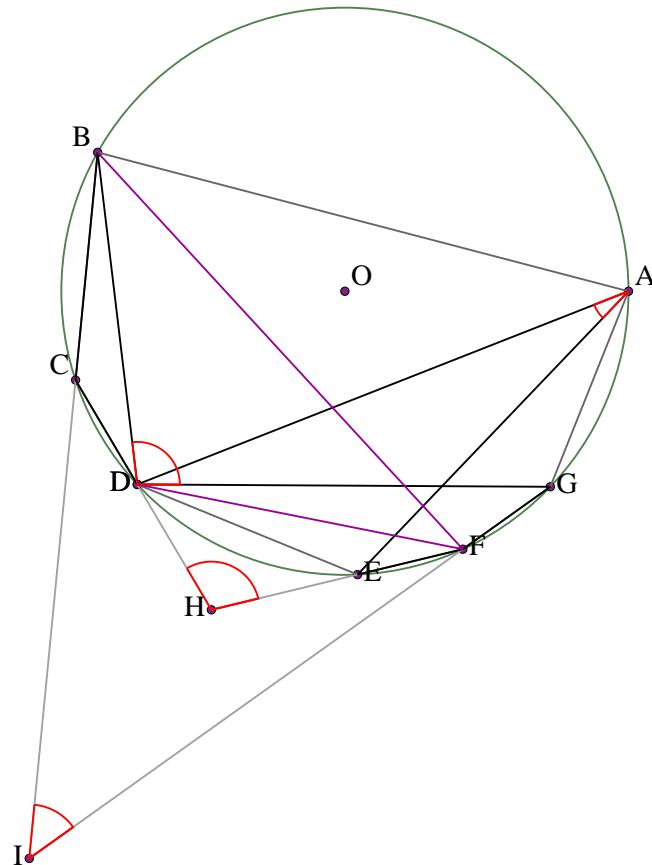
As $GEI = 180 - y$, $EGI = y - w$.

As triangle EGO is isosceles, $EOG = 2w - 2y + 180$.

As EOG is at the center of a circle on the same chord as EFG , $EOG = 2EFG$, so $EFG = w - y + 90$.

But $EFG = 180 - x - z$, so $w - y + 90 = 180 - x - z$, or $x + z + w = y + 90$, or $ADF + AHG + EIG = BCG + 90$.

Solution to example 129



Let $ABCDEF$ be a cyclic heptagon with center O . Let H be the intersection of EF and CD . Let I be the intersection of FG and BC .

Prove that $DAE+BDG+DHE = CIF+180$

Draw lines BF and DF .

Let $DAE=x$. Let $BDG=y$. Let $DHE=z$. Let $CIF=w$.

As BDG and BFG stand on the same chord, $BFG=BDG$, so $BFG=y$.

As $BFG=y$, $BFI=180-y$.

As $BFI=180-y$, $FBI=y-w$.

As DAE and DFE stand on the same chord, $DFE=DAE$, so $DFE=x$.

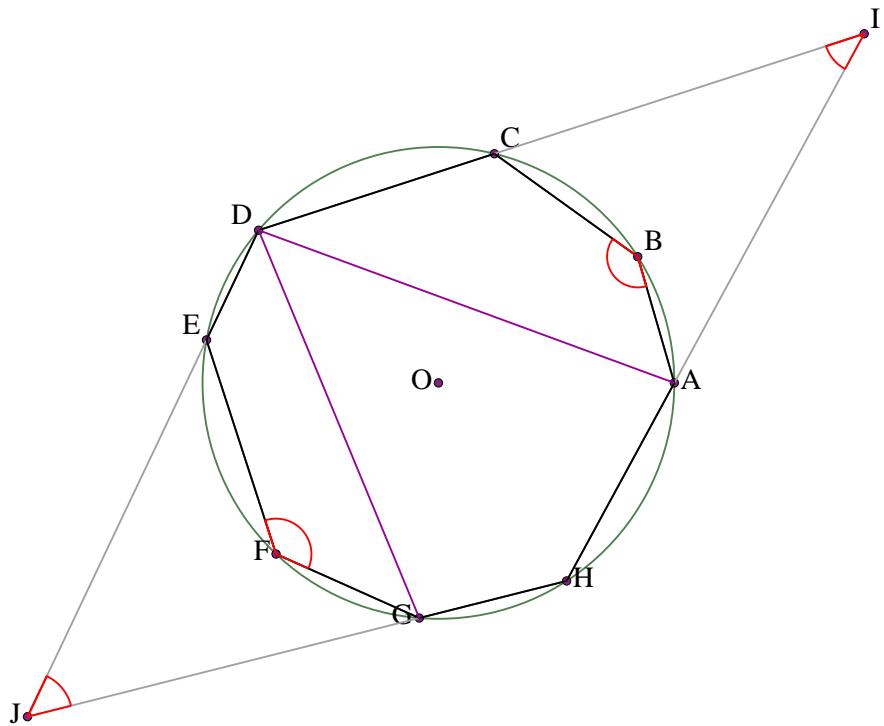
As $DFH=x$, $FDH=180-x-z$.

As $FDH=180-x-z$, $FDC=x+z$.

As $CDFB$ is a cyclic quadrilateral, $CBF=180-CDF$, so $CBF=180-x-z$.

But $CBF=y-w$, so $180-x-z=y-w$, or $x+y+z=w+180$, or $DAE+BDG+DHE=CIF+180$.

Solution to example 131



Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of CD and HA . Let J be the intersection of DE and GH .

Prove that $ABC+EFG = AIC+EJG+180$

Draw lines DG and AD .

Let $ABC=x$. Let $EFG=y$. Let $AIC=z$. Let $EJG=w$.

As $EFGD$ is a cyclic quadrilateral, $EDG=180-EFG$, so $EDG=180-y$.

As $GDJ=180-y$, $DGJ=y-w$.

As $DGJ=y-w$, $DGH=w-y+180$.

As $ABCD$ is a cyclic quadrilateral, $ADC=180-ABC$, so $ADC=180-x$.

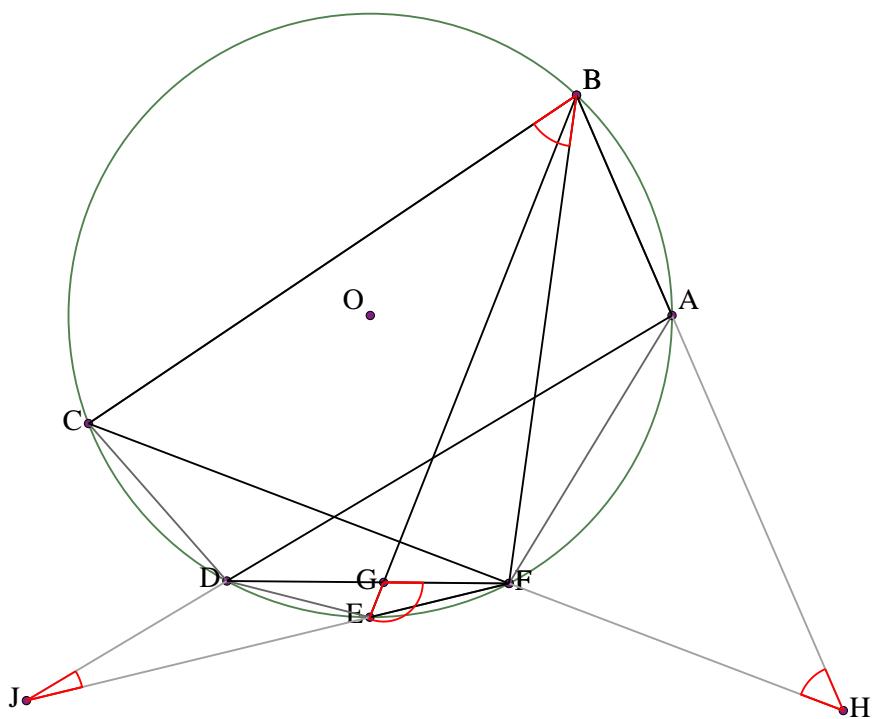
As $ADI=180-x$, $DAI=x-z$.

As $DAI=x-z$, $DAH=z-x+180$.

As $DAHG$ is a cyclic quadrilateral, $DGH=180-DAH$, so $DGH=x-z$.

But $DGH=w-y+180$, so $x-z=w-y+180$, or $z+w+180=x+y$, or $AIC+EJG+180=ABC+EFG$.

Solution to example 133



Let ABCDEF be a cyclic hexagon with center O. Let G be the intersection of DF and BE. Let H be the intersection of FC and BA. Let J be the intersection of EF and AD.

Angle FGE = x. Angle CBF = y. Angle EJD = z.

Find angle FHA.

Let $DFJ=u$.

As $EFG=u$, $FEG=180-x-u$.

As BEFA is a cyclic quadrilateral, $BAF=180-BEF$, so $BAF=x+u$.

As $BAF=x+u$, $FAH=180-x-u$.

As $CBFD$ is a cyclic quadrilateral, $CDF=180-CBF$, so $CDF=180-y$.

As $DFJ=z$, $FDJ=180-z-u$.

As $CDF=180-y$, $CDJ=y+z+u$.

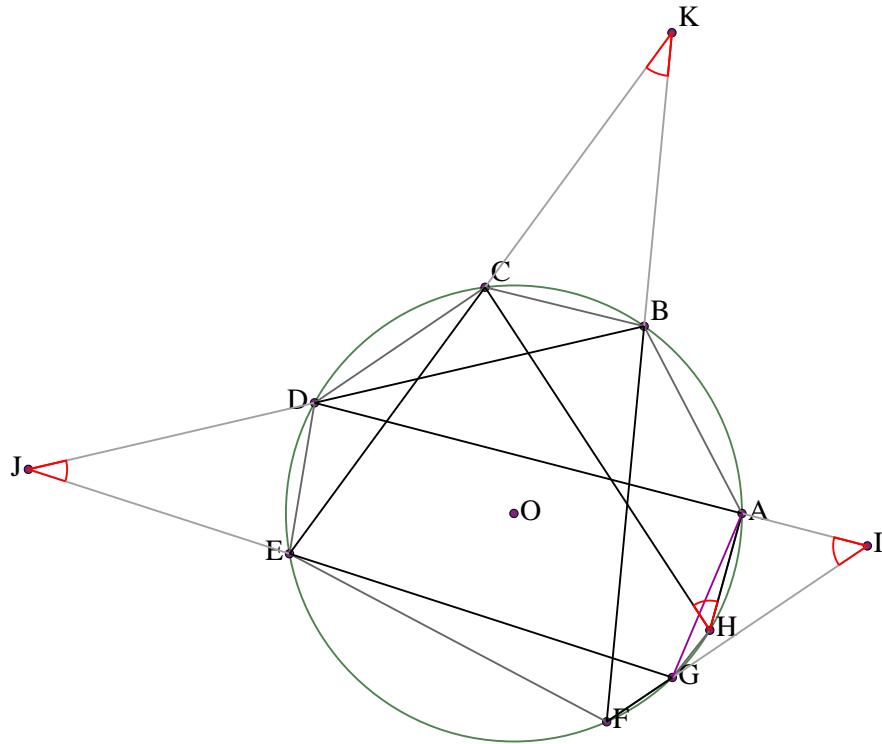
As $CDJ=y+z+u$, $CDA=180-y-z-u$.

As ADC and AFC stand on the same chord, $AFC=ADC$, so $AFC=180-y-z-u$.

As $AFC=180-y-z-u$, $AFH=y+z+u$.

As $FAH=180-x-u$, $AHF=x-y-z$.

Solution to example 135



Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of AD and FG . Let J be the intersection of DB and GE . Let K be the intersection of BF and EC .

Angle $CHA = x$. Angle $BKC = y$. Angle $DJE = z$.

Find angle AIG .

Draw line AG .

Let $CBK = u$.

As $BKC = y$, $BCK = 180 - y - u$.

As $BCK = 180 - y - u$, $BCE = y + u$.

As BCE and BDE stand on the same chord, $BDE = BCE$, so $BDE = y + u$.

As $BDE = y + u$, $EDJ = 180 - y - u$.

As $EDJ = 180 - y - u$, $DEJ = y + u - z$.

As $DEJ = y + u - z$, $DEG = z - y - u + 180$.

As $DEGA$ is a cyclic quadrilateral, $DAG = 180 - DEG$, so $DAG = y + u - z$.

As $DAG = y + u - z$, $GAI = z - y - u + 180$.

As $AHCB$ is a cyclic quadrilateral, $ABC = 180 - AHC$, so $ABC = 180 - x$.

As $CBK = u$, $CBF = 180 - u$.

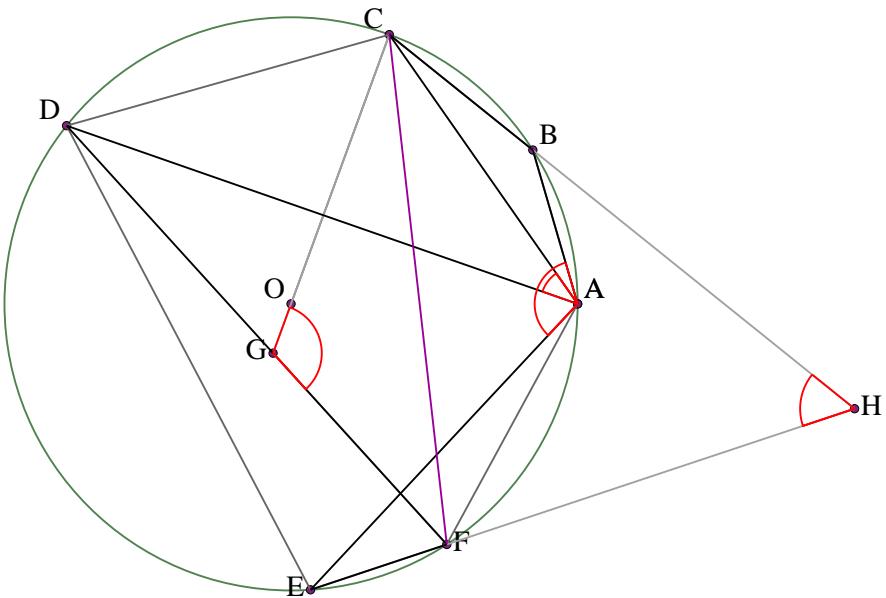
As $ABC = 180 - x$, $ABF = u - x$.

As $ABFG$ is a cyclic quadrilateral, $AGF = 180 - ABF$, so $AGF = x - u + 180$.

As $AGF = x - u + 180$, $AGI = u - x$.

As $GAI = z - y - u + 180$, $AIG = x + y - z$.

Solution to example 137



Let $ABCDEF$ be a cyclic hexagon with center O . Let G be the intersection of DF and CO . Let H be the intersection of FE and BC .

Angle EAB = x. Angle CAD = y. Angle FGC = z.

Find angle FHB.

Draw line CF.

As CAD and CFD stand on

Let $CFH = u$.

As $CFH=u$, $CFE=180-u$.

As CFD=y, DFE=180-y-u.

As DFE and DAE stand on the same chord, $DAE = DFE$, so $DAE = 180 - y - u$

As $DAE = 180 - y - u$, $DAB = y$

As $BADC$ is a cyclic quadrilateral, $BCD = 180 - E$

As $CFG=y$, $FCG=180-y-z$.

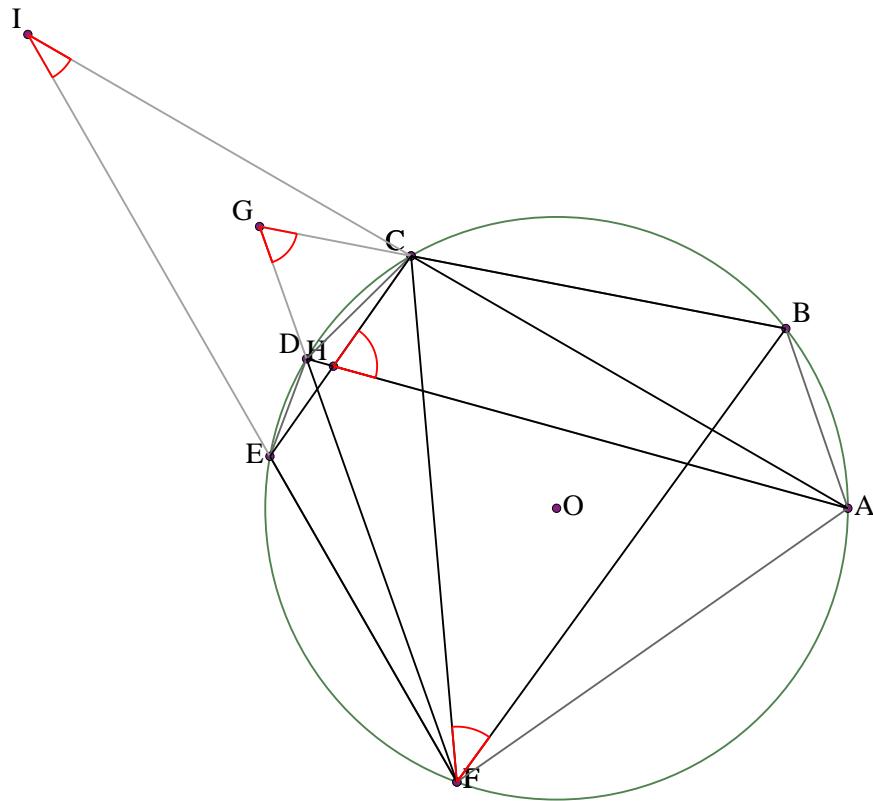
As triangle FCO is isosceles, $\angle COF = \angle CFO$

As COF is at the center of a circle on the

As CDF=y+z-90, DCF=270-2y-z.

As $DCH=360-y-x-u$, $HCF=y+z-x-u+90$

Solution to example 139



Let $ABCDEF$ be a cyclic hexagon with center O . Let G be the intersection of FD and CB . Let H be the intersection of DA and EC . Let I be the intersection of AC and FE .

Prove that $AHC + CIE = CGD + BFC$

Let $CGD = x$. Let $AHC = y$. Let $CIE = z$. Let $BFC = w$.

Let $ECI = u$.

As $CIE = z$, $CEI = 180 - z - u$.

As $CEI = 180 - z - u$, $CEF = z + u$.

As $CEFB$ is a cyclic quadrilateral, $CBF = 180 - CEF$, so $CBF = 180 - z - u$.

As $CBF = 180 - z - u$, $BCF = z + u - w$.

As $BCF = z + u - w$, $FCG = w - z - u + 180$.

As $FCG = w - z - u + 180$, $CFG = z + u - x - w$.

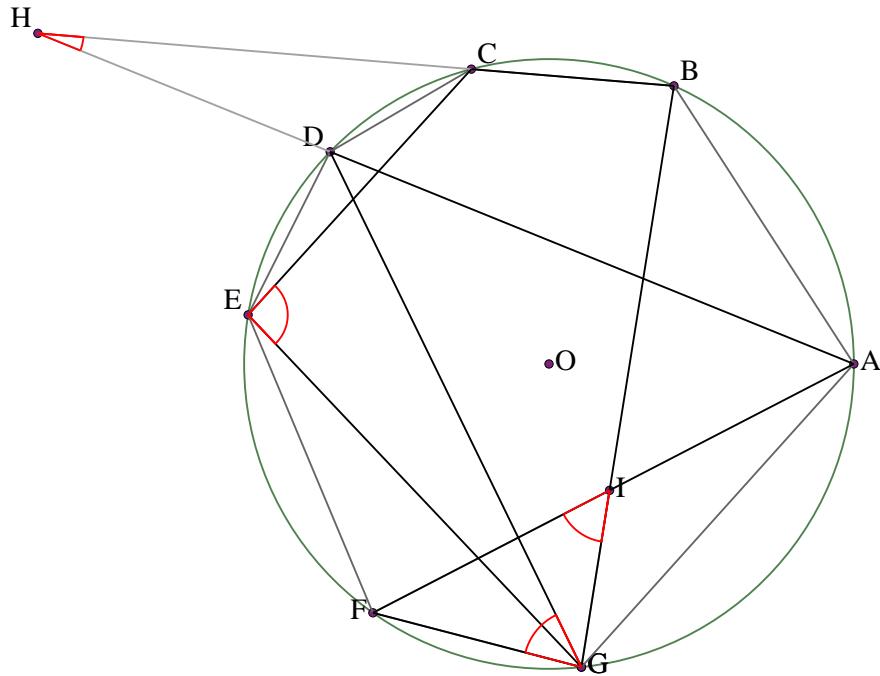
As $HCI = u$, $HCA = 180 - u$.

As $ACH = 180 - u$, $CAH = u - y$.

As CAD and CFD stand on the same chord, $CFD = CAD$, so $CFD = u - y$.

But $CFG = z + u - x - w$, so $u - y = z + u - x - w$, or $x + w = y + z$, or $CGD + BFC = AHC + CIE$.

Solution to example 141



Let $ABCDEF$ be a cyclic heptagon with center O . Let H be the intersection of CB and DA . Let I be the intersection of BG and AF .

Prove that $CEG + FIG + DGF = CHD + 180$

Let $CEG = x$. Let $CHD = y$. Let $FIG = z$. Let $DGF = w$.

Let $FGI = u$.

As BGF and BAF stand on the same chord, $BAF = BGF$, so $BAF = u$.

As DGF and DAF stand on the same chord, $DAF = DGF$, so $DAF = w$.

As $BAF = u$, $BAH = u - w$.

As $CEGB$ is a cyclic quadrilateral, $CBG = 180 - CEG$, so $CBG = 180 - x$.

As $FIG = z$, $GFI = 180 - z - u$.

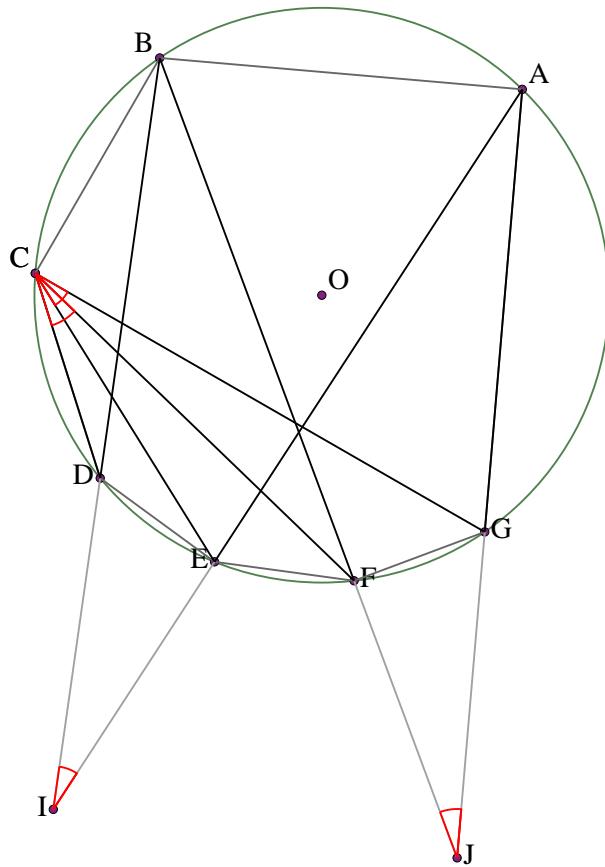
As AFG and ABG stand on the same chord, $ABG = AFG$, so $ABG = 180 - z - u$.

As $GBH = 180 - x$, $HBA = 360 - x - z - u$.

As $BAH = u - w$, $AHB = x + z + w - 180$.

But $AHB = y$, so $x + z + w - 180 = y$, or $x + z + w = y + 180$, or $CEG + FIG + DGF = CHD + 180$.

Solution to example 143



Let $ABCDEF$ be a cyclic heptagon with center O . Let I be the intersection of EA and BD . Let J be the intersection of AG and FB .

Prove that $DIE + DCF = ECG + FJG$

Let $ECG = x$. Let $DIE = y$. Let $FJG = z$. Let $DCF = w$.

Let $FGJ = u$.

As $FGJ = u$, $FGA = 180 - u$.

As $AGFB$ is a cyclic quadrilateral, $ABF = 180 - AGF$, so $ABF = u$.

As DCF and DBF stand on the same chord, $DBF = DCF$, so $DBF = w$.

As $ABF = u$, $ABI = w + u$.

As ECG and EAG stand on the same chord, $EAG = ECG$, so $EAG = x$.

As $FJG = z$, $GFJ = 180 - z - u$.

As $GFJ = 180 - z - u$, $GFB = z + u$.

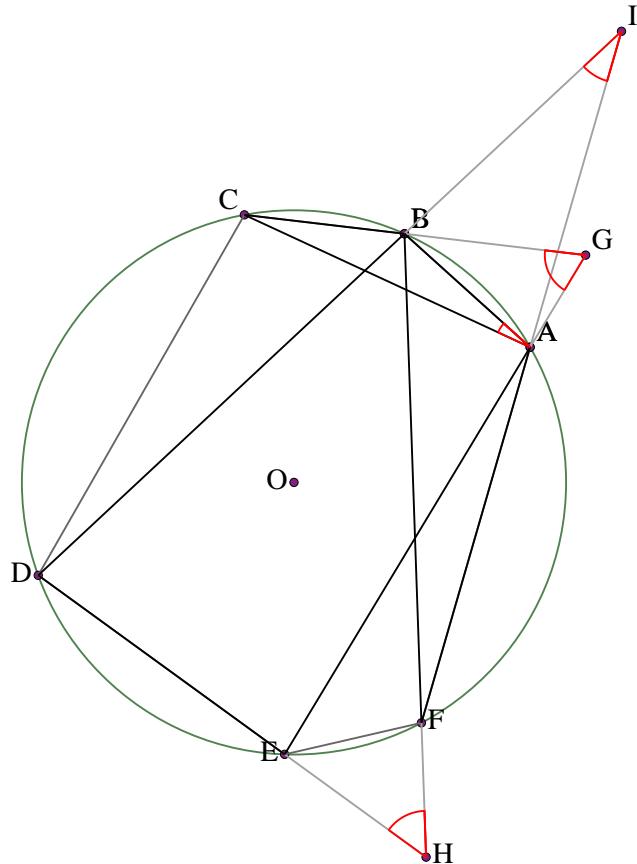
As $BFGA$ is a cyclic quadrilateral, $BAG = 180 - BFG$, so $BAG = 180 - z - u$.

As $GAI = x$, $IAB = 180 - x - z - u$.

As $ABI = w + u$, $AIB = x + z - w$.

But $AIB = y$, so $x + z - w = y$, or $x + z = y + w$, or $ECG + FJG = DIE + DCF$.

Solution to example 145



Let $ABCDEF$ be a cyclic hexagon with center O . Let G be the intersection of CB and AE . Let H be the intersection of BF and ED . Let I be the intersection of FA and DB .

Prove that $EHF + AIB = BAC + AGB$

Let $BAC = x$. Let $AGB = y$. Let $EHF = z$. Let $AIB = w$.

Let $EFH = u$.

As $EHF = z$, $FEH = 180 - z - u$.

As $FEH = 180 - z - u$, $FED = z + u$.

As $DEFB$ is a cyclic quadrilateral, $DBF = 180 - DEF$, so $DBF = 180 - z - u$.

As $DBF = 180 - z - u$, $FBI = z + u$.

As $FBI = z + u$, $BFI = 180 - z - w - u$.

As $EFH = u$, $EFB = 180 - u$.

As BFE and BAE stand on the same chord, $BAE = BFE$, so $BAE = 180 - u$.

As $BAE = 180 - u$, $BAG = u$.

As $BAG = u$, $ABG = 180 - y - u$.

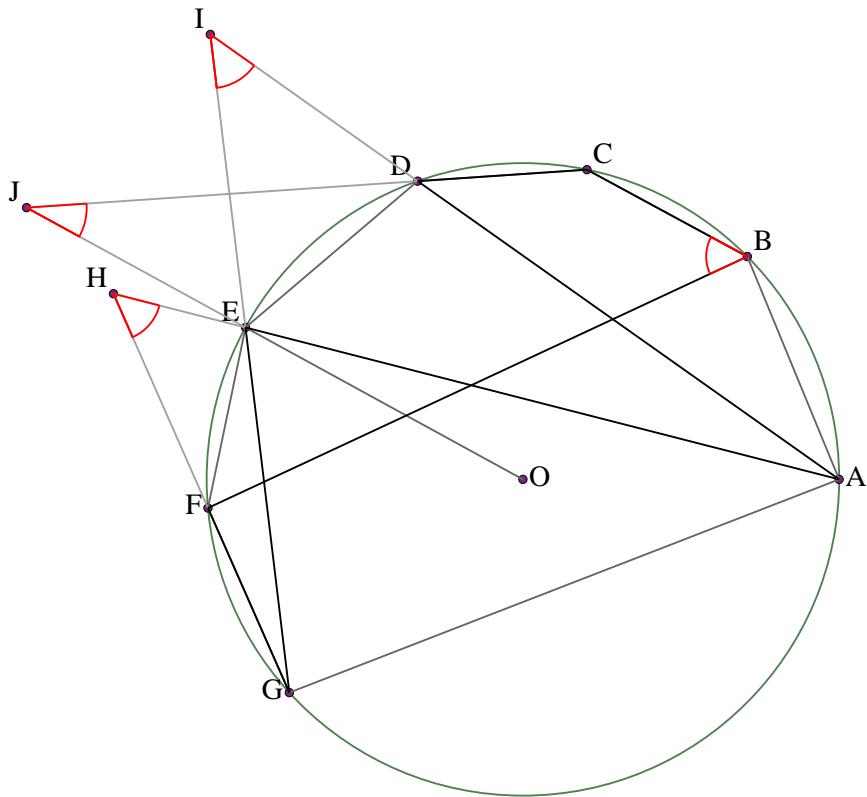
As $ABG = 180 - y - u$, $ABC = y + u$.

As $ABC = y + u$, $ACB = 180 - x - y - u$.

As ACB and AFB stand on the same chord, $AFB = ACB$, so $AFB = 180 - x - y - u$.

But $AFB = 180 - z - w - u$, so $180 - x - y - u = 180 - z - w - u$, or $z + w = x + y$, or $EHF + AIB = BAC + AGB$.

Solution to example 147



Let ABCDEFG be a cyclic heptagon with center O. Let H be the intersection of FG and EA. Let I be the intersection of GE and AD. Let J be the intersection of OE and DC.

Angle CBF = x. Angle FHE = y. Angle EJD = z.

Find angle EID.

Let DEI=u.

As DEI=u, DEG=180-u.

Let CDE=v.

As CDE=v, EDJ=180-v.

As EDJ=180-v, DEJ=v-z.

As DEG=180-u, GEJ=z+u-v+180.

As GEJ=z+u-v+180, GEO=v-z-u.

As triangle GEO is isosceles,

EOG=2z+2u-2v+180.

As EOG is at the center of a circle on the same chord, but in the opposite direction to EFG,
 $EOG=360-2EFG$, so $EFG=v-z-u+90$.

As $EFG=v-z-u+90$, $EFH=z+u-v+90$.

As $EFH=z+u-v+90$, $FEH=v-y-z-u+90$.

As $FEH=v-y-z-u+90$, $FEA=y+z+u-v+90$.

As AEF and ABF stand on the same chord,
 $ABF=AEF$, so $ABF=y+z+u-v+90$.

As $ABF=y+z+u-v+90$, $ABC=x+y+z+u-v+90$.

As ABCD is a cyclic quadrilateral,

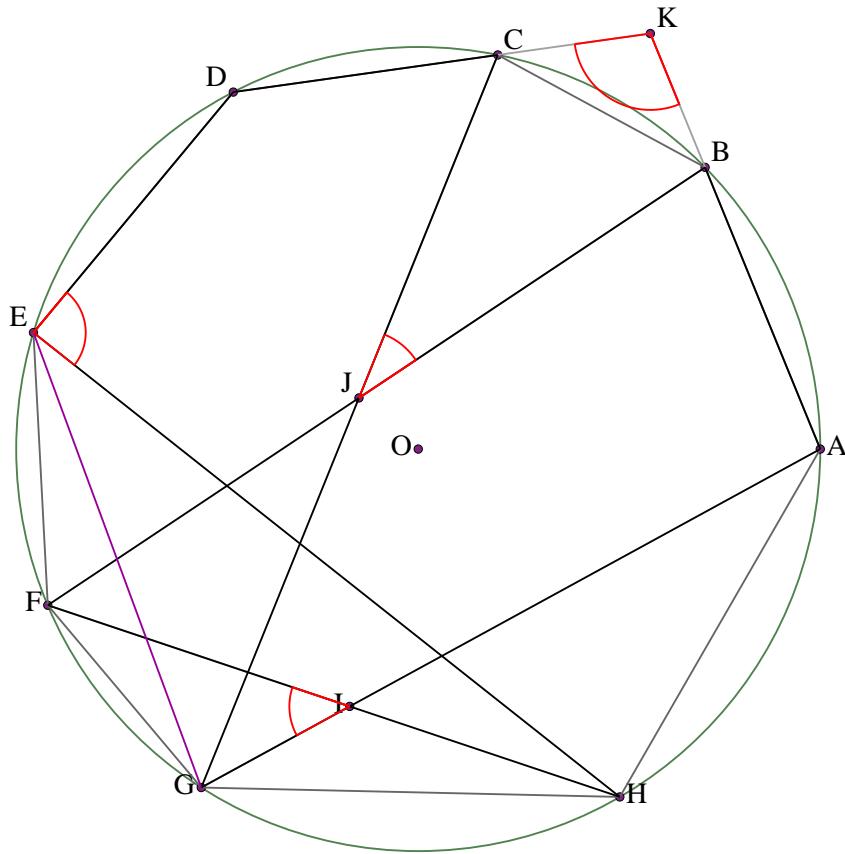
$ADC=180-ABC$, so $ADC=v-x-y-z-u+90$.

As $ADC=v-x-y-z-u+90$, $ADE=x+y+z+u-90$.

As $ADE=x+y+z+u-90$, $EDI=270-x-y-z-u$.

As $EDI=270-x-y-z-u$, $DIE=x+y+z-90$.

Solution to example 149



Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of HF and AG . Let J be the intersection of FB and GC . Let K be the intersection of BA and CD .

Angle $DEH = x$. Angle $BJC = y$. Angle $BKC = z$.

Find angle FIG .

Draw line EG .

Let $CBJ=u$.

As $BJC=y$, $BCJ=180-y-u$.

Let $CBK=v$.

As $BKC=z$, $BCK=180-z-v$.

As $BCK=180-z-v$, $BCD=z+v$.

As $BCG=180-y-u$, $GCD=y+z+u+v-180$.

As $DCGE$ is a cyclic quadrilateral, $DEG=180-DCG$, so $DEG=360-y-z-u-v$.

As $DEG=360-y-z-u-v$, $GEH=360-x-y-z-u-v$.

As GEH and GFH stand on the same chord, $GFH=GEH$, so $GFH=360-x-y-z-u-v$.

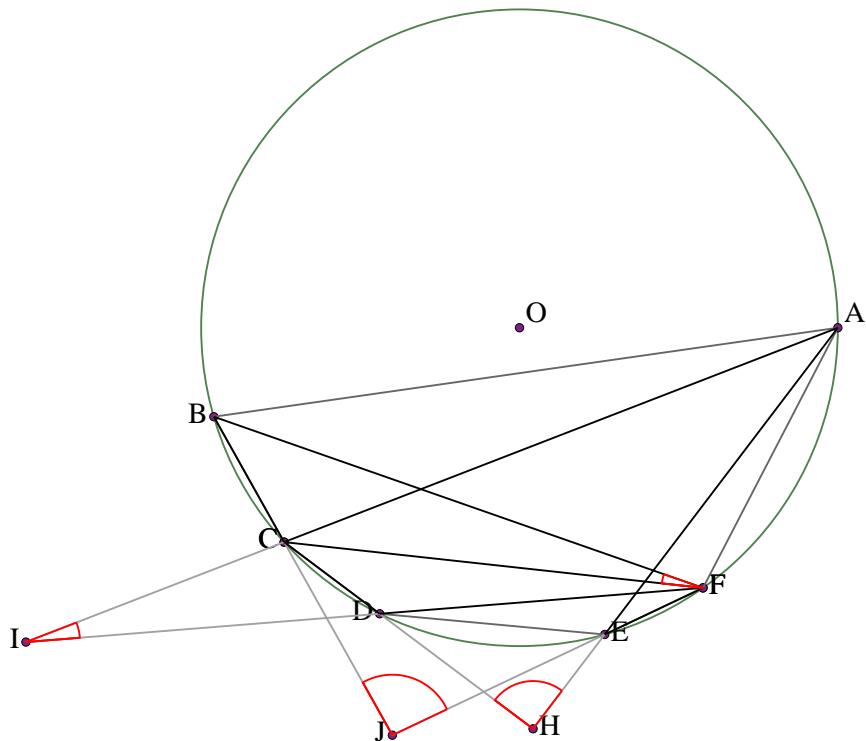
As $CBK=v$, $CBA=180-v$.

As $CBF=u$, $FBA=180-u-v$.

As $ABFG$ is a cyclic quadrilateral, $AGF=180-ABF$, so $AGF=u+v$.

As $GFI=360-x-y-z-u-v$, $FIG=x+y+z-180$.

Solution to example 151



Let ABCDEF be a cyclic hexagon with center O. Let H be the intersection of CD and AE. Let I be the intersection of DF and CA. Let J be the intersection of BC and EF.

Prove that $BFC + CJE = DHE + CID$

Let $BFC = x$. Let $DHE = y$. Let $CID = z$. Let $CJE = w$.

Let $CDI = u$.

As $CID = z$, $DCI = 180 - z - u$.

As $DCI = 180 - z - u$, $DCA = z + u$.

As ACDE is a cyclic quadrilateral,

$AED = 180 - ACD$, so $AED = 180 - z - u$.

As $AED = 180 - z - u$, $DEH = z + u$.

As $DEH = z + u$, $EDH = 180 - y - z - u$.

Let $FCJ = v$.

As $CJF = w$, $CFJ = 180 - w - v$.

As CFED is a cyclic quadrilateral, $CDE = 180 - CFE$,

so $CDE = w + v$.

As $CDE = w + v$, $EDH = 180 - w - v$.

But $EDH = 180 - y - z - u$, so $180 - w - v = 180 - y - z - u$, or

$y + z + u = w + v$.

As $FCJ = v$, $FCB = 180 - v$.

As $CDI = u$, $CDF = 180 - u$.

As CDFB is a cyclic quadrilateral, $CBF = 180 - CDF$,

so $CBF = u$.

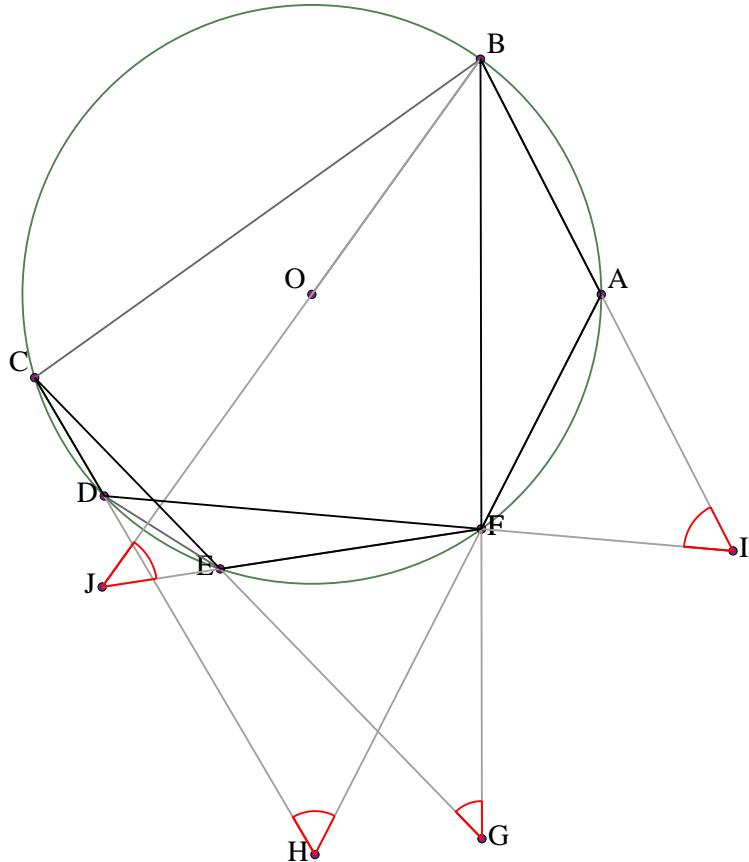
As $BCF = 180 - v$, $BFC = v - u$.

But $BFC = x$, so $v - u = x$, or $v = x + u$.

We have these equations: $w + v - y - z - u = 0$ (E1),
 $x + u - v = 0$ (E2).

Hence $x + w - y - z = 0$ (E1 + E2), or $x + w = y + z$, or
 $BFC + CJE = DHE + CID$.

Solution to example 153



Let ABCDEF be a cyclic hexagon with center O. Let G be the intersection of EC and FB. Let H be the intersection of CD and AF. Let I be the intersection of DF and BA. Let J be the intersection of OB and FE.

Angle DHF = x. Angle EGF = y. Angle FIA = z.

Find angle BJE.

Let $FBJ=u$.

As triangle FBO is isosceles, $BOF=180-2u$.

As BOF is at the center of a circle on the same chord, but in the opposite direction to BAF , $BOF=360-2BAF$, so $BAF=u+90$.

As $BAF=u+90$, $FAI=90-u$.

As $FAI=90-u$, $AFI=u-z+90$.

As $AFI=u-z+90$, $IFH=z-u+90$.

As $HFI=z-u+90$, $HFD=u-z+90$.

As $DFH=u-z+90$, $FDH=z-x-u+90$.

As $FDH=z-x-u+90$, $FDC=x+u-z+90$.

As CDF and CEF stand on the same chord, $CEF=CDF$, so $CEF=x+u-z+90$.

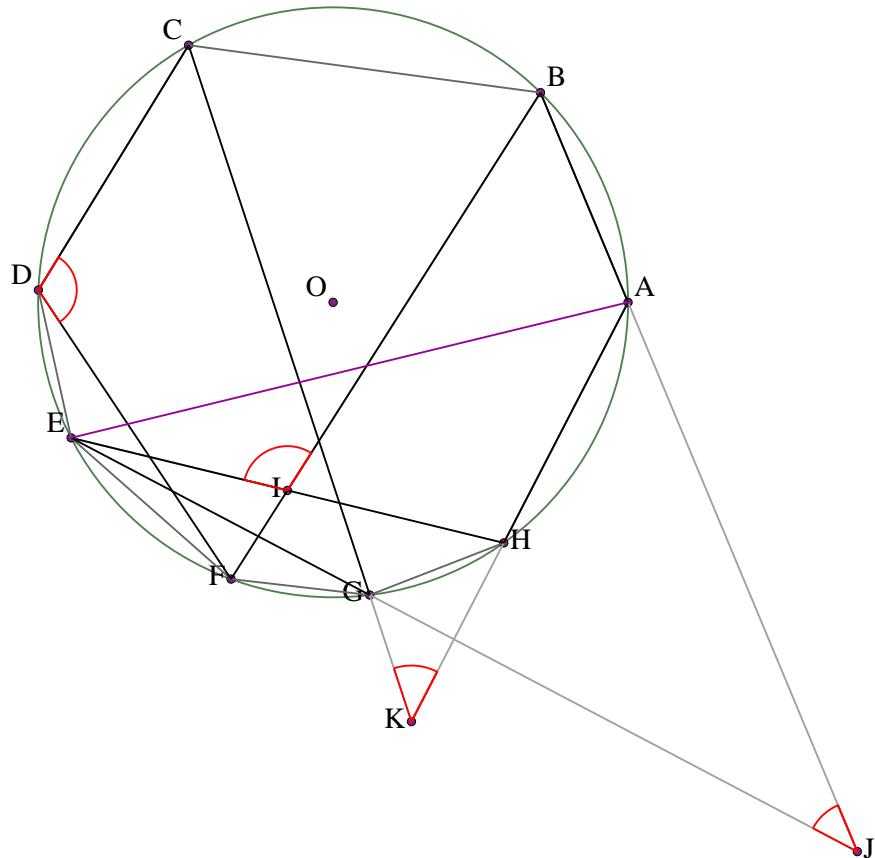
As $CEF=x+u-z+90$, $FEG=z-x-u+90$.

As $FEG=z-x-u+90$, $EFG=x+u-y-z+90$.

As $EFG=x+u-y-z+90$, $EFB=y+z-x-u+90$.

As $BFJ=y+z-x-u+90$, $BJF=x-y-z+90$.

Solution to example 155



Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of FB and HE . Let J be the intersection of BA and EG . Let K be the intersection of AH and GC .

Angle $BIE = 109^\circ$. Angle $HKG = 46^\circ$. Angle $CDF = 115^\circ$.

Find angle AJG .

Draw line AE .

As $CDFG$ is a cyclic quadrilateral, $CGF = 180 - CDF$, so $CGF = 65$.

As $CGF = 65$, $FGK = 115$.

Let $GHK = u$.

As $GKH = 46$, $HGK = 134 - u$.

As $FGK = 115$, $FGH = u + 111$.

As $FGHE$ is a cyclic quadrilateral, $FEH = 180 - FGH$, so $FEH = 69 - u$.

As $BIE = 109$, $EIF = 71$.

As $FEI = 69 - u$, $EFI = u + 40$.

As BFE and BAE stand on the same chord, $BAE = BFE$, so $BAE = u + 40$.

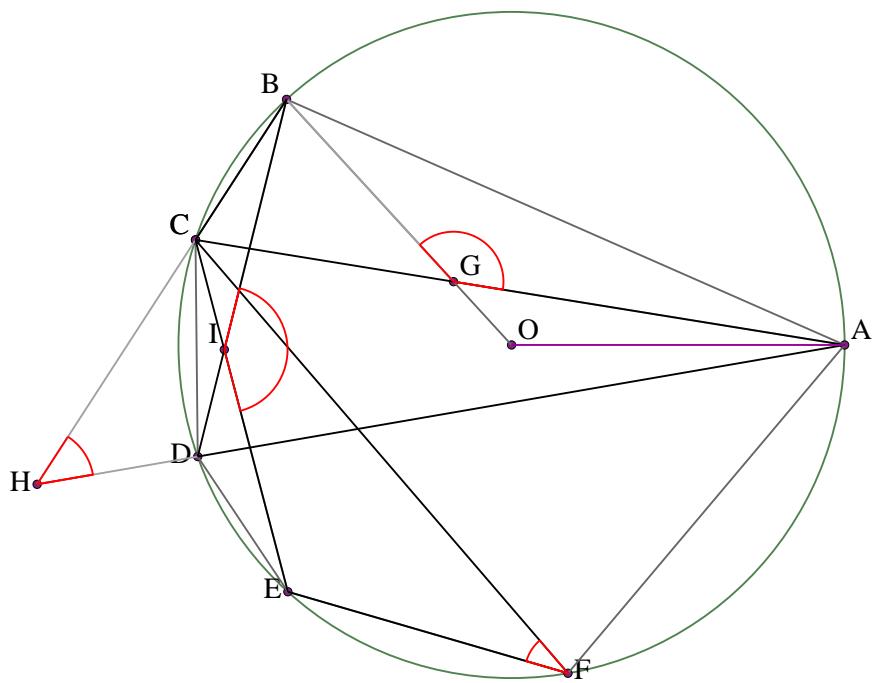
As $BAE = u + 40$, $EAJ = 140 - u$.

As $GHK = u$, $GHA = 180 - u$.

As $AHGE$ is a cyclic quadrilateral, $AEG = 180 - AHG$, so $AEG = u$.

As $EAJ = 140 - u$, $AJE = 40$.

Solution to example 157



Let ABCDEF be a cyclic hexagon with center O. Let G be the intersection of CA and BO. Let H be the intersection of AD and BC. Let I be the intersection of DB and CE.

Angle EFC = 33°. Angle DHC = 47°. Angle BIE = 151°.

Find angle AGB.

Draw line AO.

As BIE=151, EID=29.

Let CDI=u.

As CFED is a cyclic quadrilateral, CDE=180-CFE, so CDE=147.

As CDI=u, IDE=147-u.

As DIE=29, DEI=u+4.

As CED and CBD stand on the same chord, CBD=CED, so CBD=u+4.

As DBH=u+4, BDH=129-u.

As BDH=129-u, BDA=u+51.

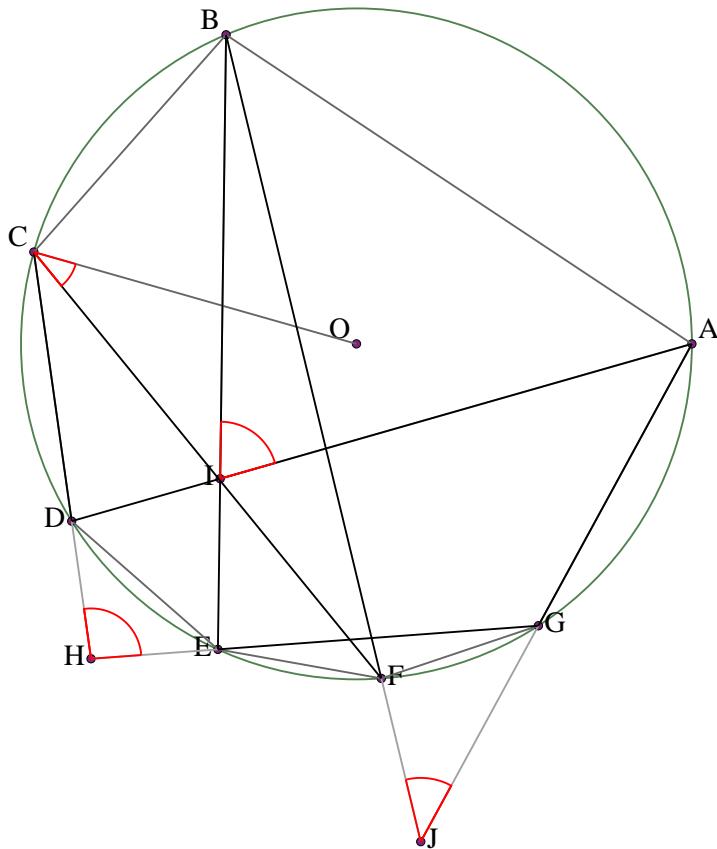
As AOB is at the center of a circle on the same chord as ADB, AOB=2ADB, so AOB=2u+102.

As triangle AOB is isosceles, ABO=39-u.

As BDC and BAC stand on the same chord, BAC=BDC, so BAC=u.

As ABG=39-u, AGB=141.

Solution to example 159



Let $ABCDEFG$ be a cyclic heptagon with center O . Let H be the intersection of CD and GE . Let I be the intersection of DA and EB . Let J be the intersection of AG and BF .

Angle DHE = x. Angle AIB = y. Angle FCO = z.

Find angle GJF.

Let $BAI=u$.

As AIB=y, ABI=180-y-u.

As ABE and ADE stand on the same chord,

ADE=ABE, so ADE=180-y-u.

As triangle FCO is isosceles, $\text{COF} = 180 - 2z$.

As COF is at the center of a circle on the same chord as CBF, $COF = 2CBF$, so $CBF = 90 - z$.

Let $FGJ=v$.

As $FGJ=v$, $FGA=180-v$.

As $AGFB$ is a cyclic quadrilateral, $ABF = 180 - AGF$,
so $ABF = y$.

As $CBF = 90 - z$, $CBA = v - z + 90$.

As ABCD is a cyclic quadrilateral.

As ABCD is a cyclic quadrilateral,
 $\angle ADC = 180^\circ - \angle ABC$, so $\angle ADC = z - y + 90^\circ$.

As $\angle ADF = 180 - v - ll$, $\angle EDC = z - v - ll - v + 270$.

As CDE=z-y-11=y+270. EDH=y+11+y-z=90.

As $EDH = y + 90$, $DEH = z - x - y + 270$.

As DEH=z-x-y-11-v+270, DEG=x+y+11+v-z-90.

As $\text{DEG}_1 = x + y + u + v = 70$, $\text{DEG}_2 = x + y + u + v - 90$.

As BAD and BED stand on the same chord, $BED = BAD$, so $BED = u$.

As $DEG = x + y + u + v - z - 90$, $GEB = x + y + v - z - 90$.

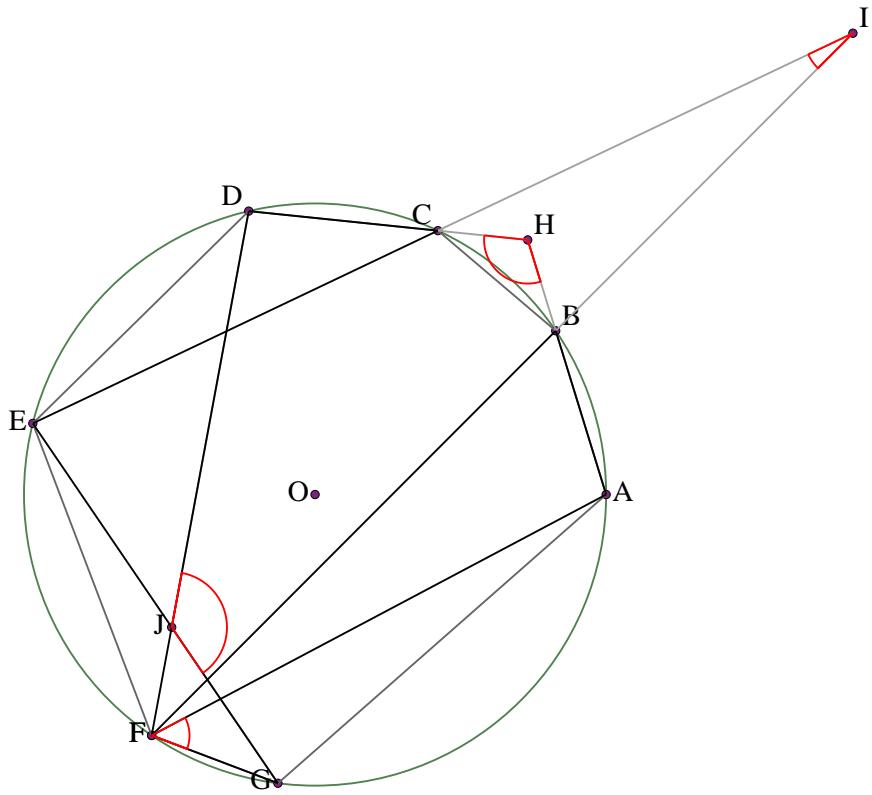
As BEG and BFG stand on the same chord,

BFG=BEG, so BFG=x+y+v-z-90.

As $BFG = x + y + v - z - 90$, $GFJ = z - x - y - v + 270$.

As $GFJ = z - x - y - v + 270$, $FJG = x + y - z - 90$.

Solution to example 161



Let $ABCDEFG$ be a cyclic heptagon with center O . Let H be the intersection of AB and DC . Let I be the intersection of BF and CE . Let J be the intersection of FD and EG .

Angle GFA = 49° . Angle BIC = 20° . Angle BHC = 113° .

Find angle DJG.

Let $EFJ=v$.

As DFE and DCE stand on the same chord, $DCE = DFE$, so $DCE = v$.

As DCE=v, ECH=180-v.

Let $CBI = u$.

As BIC=20, BCI=160-u.

As $BCI = 160 - u$, $BCE = u + 20$.

As ECH=180-v, HCB=160-u-v.

As $BCH = 160 - u - v$, $CBH = u + v - 93$.

As $CBH = u + v - 93$, $CBA = 273 - u - v$.

As $CBI = u$, $CBF = 180 - u$.

As ABC=273-u-v, ABF

As ABFG is a cyclic quadrilateral

As $AGF = v + 87$, $FAG = 44 - v$.

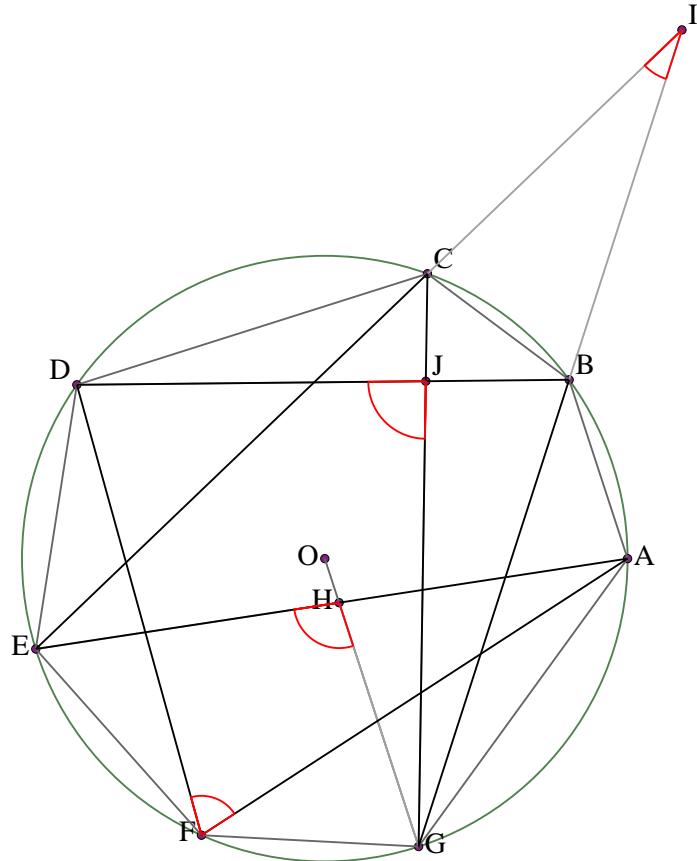
As FAG and FEG stand on t

As FEJ=44-y, EJF=136.

As EJF=136, EJD=44.

As DJE=44, DJG=136

Solution to example 163



Let $ABCDEF$ be a cyclic heptagon with center O . Let H be the intersection of AE and GO . Let I be the intersection of EC and GB . Let J be the intersection of CG and BD .

$\angle EHG = 99^\circ$. $\angle CIB = 28^\circ$. $\angle GJD = 89^\circ$.

Find angle DFA .

Let $BGJ = u$.

As $CGI = u$, $GCI = 152 - u$.

As $GCI = 152 - u$, $GCE = u + 28$.

As ECG and EAG stand on the same chord, $EAG = ECG$, so $EAG = u + 28$.

As $EHG = 99$, $GHA = 81$.

As $GAH = u + 28$, $AGH = 71 - u$.

As triangle AGO is isosceles, $AOG = 2u + 38$.

As AOG is at the center of a circle on the same chord as AFG , $AOG = 2AFG$, so $AFG = u + 19$.

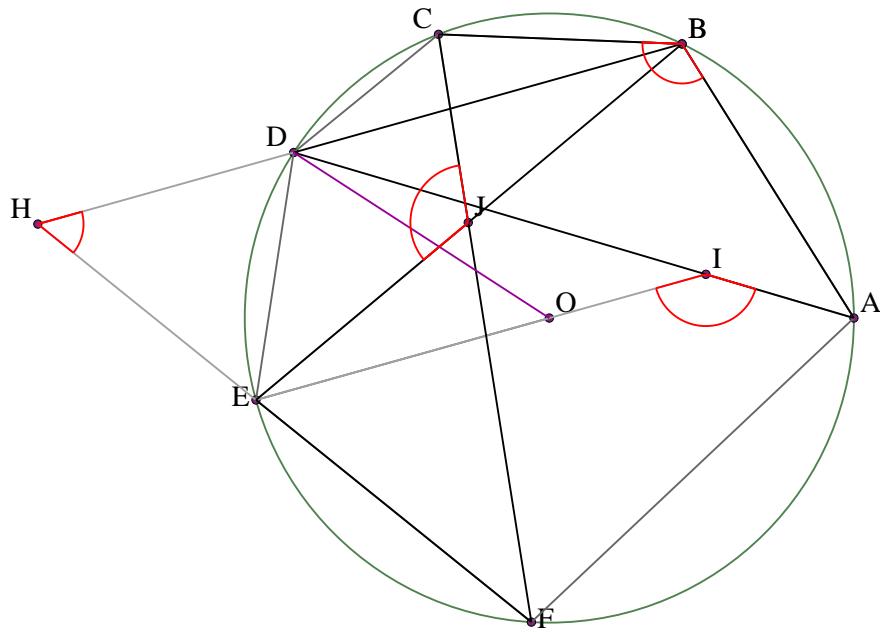
As $DJG = 89$, $GJB = 91$.

As $BJG = 91$, $GBJ = 89 - u$.

As DBG is a cyclic quadrilateral, $DFG = 180 - DBG$, so $DFG = u + 91$.

As $AFG = u + 19$, $AFD = 72$.

Solution to example 165



Let ABCDEF be a cyclic hexagon with center O. Let H be the intersection of BD and EF. Let I be the intersection of DA and EO. Let J be the intersection of BE and FC.

Angle CBA = x. Angle DHE = y. Angle EJC = z.

Find angle AIE.

Draw line DO.

Let FEJ=u.

As FEJ=u, JEH=180-u.

As BEH=180-u, EBH=u-y.

As DOE is at the center of a circle on the same chord as DBE, DOE=2DBE, so DOE=2u-2y.

As triangle DOE is isosceles, DEO=y-u+90.

As CJE=z, EJF=180-z.

As EJF=180-z, EFJ=z-u.

As CFED is a cyclic quadrilateral, CDE=180-CFE, so CDE=u-z+180.

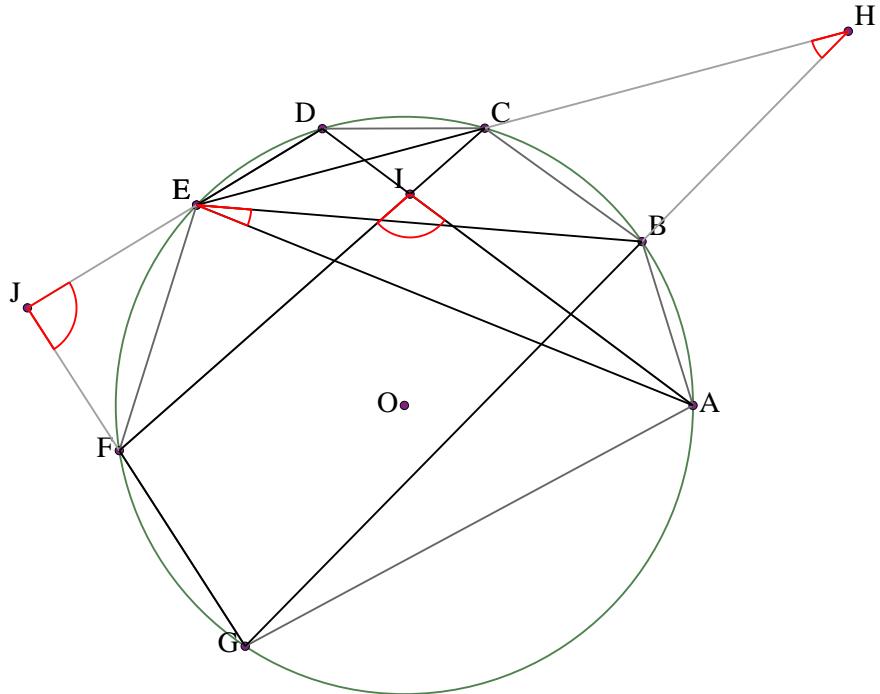
As ABCD is a cyclic quadrilateral, ADC=180-ABC, so ADC=180-x.

As CDE=u-z+180, EDI=x+u-z.

As DEI=y-u+90, DIE=z-x-y+90.

As DIE=z-x-y+90, EIA=x+y-z+90.

Solution to example 167



Let $ABCDEF$ be a cyclic heptagon with center O . Let H be the intersection of EC and GB . Let I be the intersection of CF and DA . Let J be the intersection of FG and ED .

Prove that $AIF + AEB = BHC + EJF$

Let $BHC = x$. Let $AIF = y$. Let $EJF = z$. Let $AEB = w$.

Let $EFJ = u$.

As $EFJ = u$, $EFG = 180 - u$.

As $EFGB$ is a cyclic quadrilateral, $EBG = 180 - EFG$, so $EBG = u$.

As $EBG = u$, $EBH = 180 - u$.

As $EBH = 180 - u$, $BEH = u - x$.

As $BEH = u - x$, $HEA = w + u - x$.

As $EJF = z$, $FEJ = 180 - z - u$.

As $FEJ = 180 - z - u$, $FED = z + u$.

As $DEFC$ is a cyclic quadrilateral, $DCF = 180 - DEF$, so $DCF = 180 - z - u$.

As $AIF = y$, $AIC = 180 - y$.

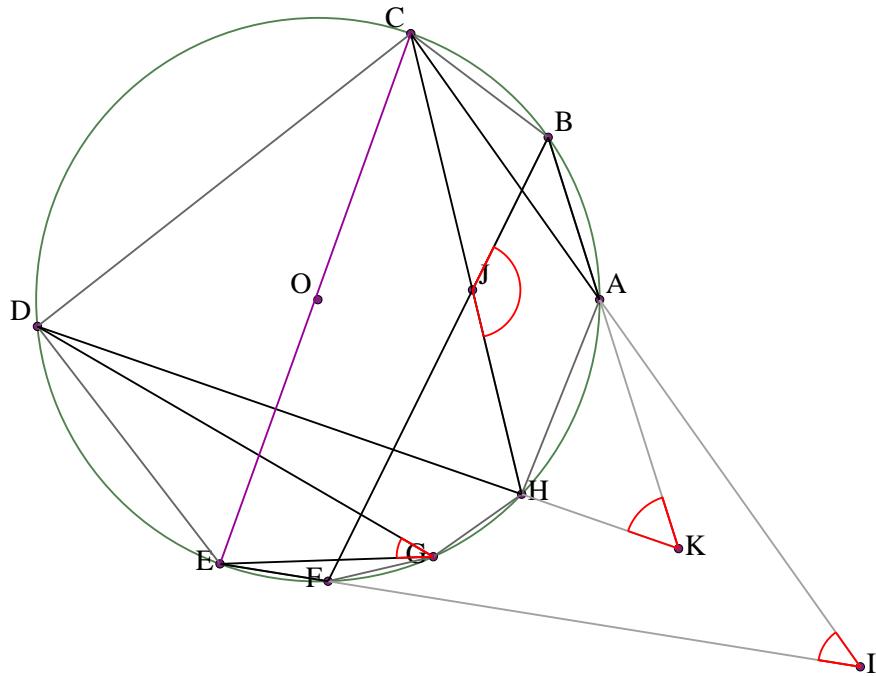
As $AIC = 180 - y$, $CID = y$.

As $CDI = 180 - z - u$, $CDI = z + u - y$.

As ADC and AEC stand on the same chord, $AEC = ADC$, so $AEC = z + u - y$.

But $AEC = w + u - x$, so $z + u - y = w + u - x$, or $x + z = y + w$, or $BHC + EJF = AIF + AEB$.

Solution to example 169



Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of EF and AC . Let J be the intersection of FB and CH . Let K be the intersection of BA and HD .

Angle $FIA = x$. Angle $DGE = y$. Angle $AKH = z$.

Find angle BJH .

Draw line CE .

Let $HAK=u$.

As $AKH=z$, $AHK=180-z-u$.

As $AHK=180-z-u$, $AHD=z+u$.

As $AHDC$ is a cyclic quadrilateral, $ACD=180-AHD$, so $ACD=180-z-u$.

As DGE and DCE stand on the same chord, $DCE=DGE$, so $DCE=y$.

As $DCI=180-z-u$, $ICE=180-y-z-u$.

As $ECI=180-y-z-u$, $CEI=y+z+u-x$.

As $CEFB$ is a cyclic quadrilateral, $CBF=180-CEF$, so $CBF=x-y-z-u+180$.

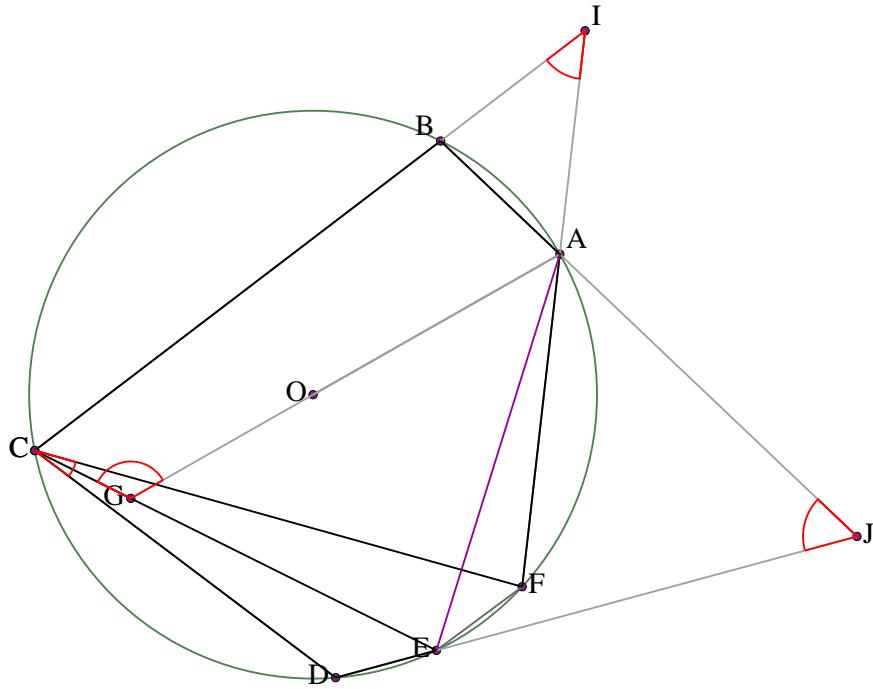
As $HAK=u$, $HAB=180-u$.

As $BAHC$ is a cyclic quadrilateral, $BCH=180-BAH$, so $BCH=u$.

As $CBJ=x-y-z-u+180$, $BJC=y+z-x$.

As $BJC=y+z-x$, $BJH=x-y-z+180$.

Solution to example 171



Let ABCDEF be a cyclic hexagon with center O. Let G be the intersection of EC and AO. Let I be the intersection of FA and BC. Let J be the intersection of AB and DE.

Prove that $AGC + AIB = DCF + AJE + 90$

Draw line AE.

Let $AGC = x$. Let $DCF = y$. Let $AIB = z$. Let $AJE = w$.

As $DCFE$ is a cyclic quadrilateral, $DEF = 180 - DCF$, so $DEF = 180 - y$.

As $DEF = 180 - y$, $FEJ = y$.

Let $EAJ = v$.

As $AJE = w$, $AEJ = 180 - w - v$.

As $FEJ = y$, $FEA = 180 - y - w - v$.

Let $BAI = u$.

As $BAI = u$, $BAF = 180 - u$.

As $EAJ = v$, $EAB = 180 - v$.

As $BAF = 180 - u$, $FAE = v - u$.

As $AEF = 180 - y - w - v$, $AFE = y + w + u$.

As $AIB = z$, $ABI = 180 - z - u$.

As $ABI = 180 - z - u$, $ABC = z + u$.

As $ABCE$ is a cyclic quadrilateral,

$AEC = 180 - ABC$, so $AEC = 180 - z - u$.

As $AGC = x$, $AGE = 180 - x$.

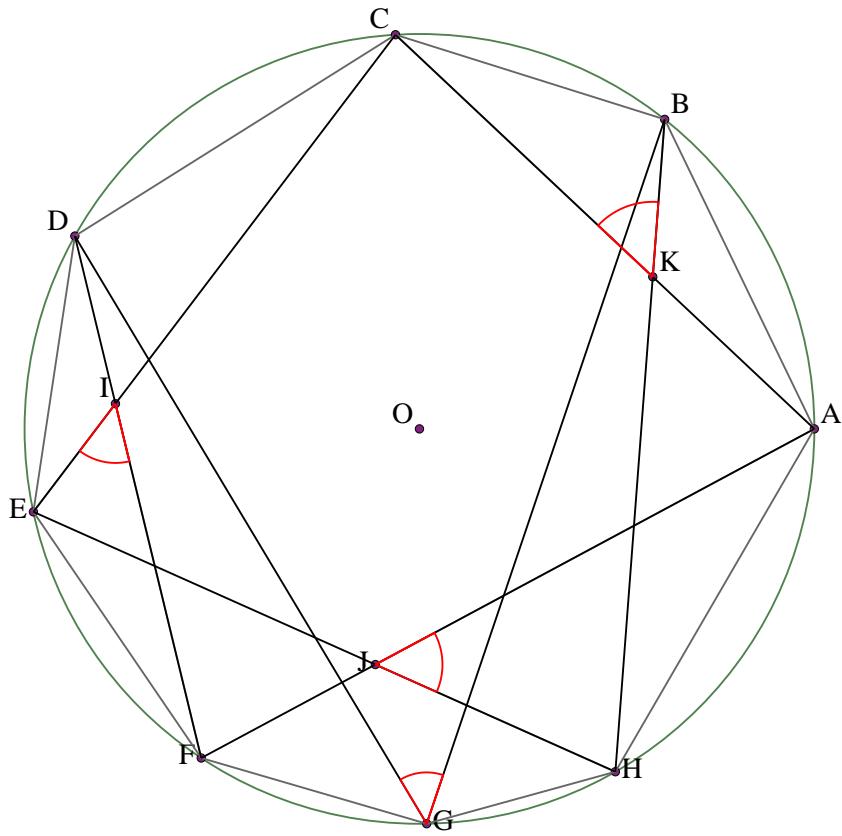
As $AEG = 180 - z - u$, $EAG = x + z + u - 180$.

As triangle EAQ is isosceles, $AOE = 540 - 2x - 2z - 2u$.

As AOE is at the center of a circle on the same chord, but in the opposite direction to AFE , $AOE = 360 - 2AFE$, so $AFE = x + z + u - 90$.

But $AFE = y + w + u$, so $x + z + u - 90 = y + w + u$, or $x + z = y + w + 90$, or $AGC + AIB = DCF + AJE + 90$.

Solution to example 173



Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of DF and CE . Let J be the intersection of FA and EH . Let K be the intersection of AC and HB .

Angle $BGD = 50^\circ$. Angle $AJH = 52^\circ$. Angle $FIE = 51^\circ$.

Find angle CKB .

As $BGDC$ is a cyclic quadrilateral, $BCD = 180 - BGD$, so $BCD = 130$.

Let $BCK = v$.

As $BCD = 130$, $DCA = 130 - v$.

Let $HAJ = u$.

As $AJH = 52$, $AHJ = 128 - u$.

As $AHEC$ is a cyclic quadrilateral, $ACE = 180 - AHE$, so $ACE = u + 52$.

As $ACD = 130 - v$, $DCE = 78 - u - v$.

As $EIF = 51$, $EID = 129$.

As $DIE = 129$, $DIC = 51$.

As $DCI = 78 - u - v$, $CDI = u + v + 51$.

As CDF and CEF stand on the same chord, $CEF = CDF$, so $CEF = u + v + 51$.

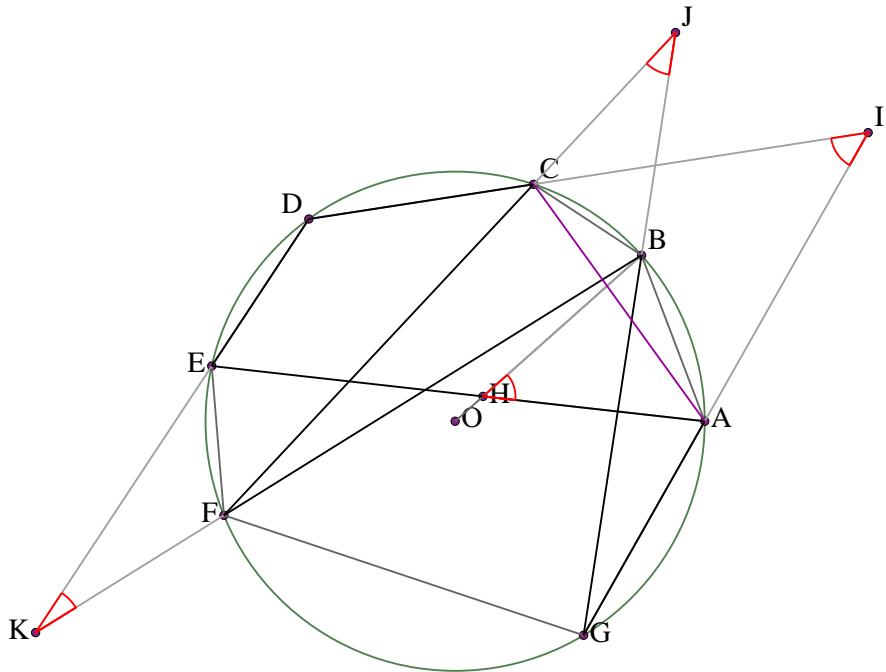
As FAH and FEH stand on the same chord, $FEH = FAH$, so $FEH = u$.

As $CEF = u + v + 51$, $CEH = v + 51$.

As $CEHB$ is a cyclic quadrilateral, $CBH = 180 - CEH$, so $CBH = 129 - v$.

As $CBK = 129 - v$, $BKC = 51$.

Solution to example 175



Let $ABCDEFG$ be a cyclic heptagon with center O . Let H be the intersection of EA and BO . Let I be the intersection of AG and CD . Let J be the intersection of GB and FC . Let K be the intersection of BF and DE . Angle $AHB = 48^\circ$. Angle $AIC = 52^\circ$. Angle $FKE = 25^\circ$.

Find angle BJC .

Draw line AC .

Let $CBJ=u$.

As $CBJ=u$, $CBG=180-u$.

As CBG and CAG stand on the same chord, $CAG=CBG$, so $CAG=180-u$.

As $CAG=180-u$, $CAI=u$.

As $CAI=u$, $ACI=128-u$.

As $ACI=128-u$, $ACD=u+52$.

Let $EFK=v$.

As $EKF=25$, $FEK=155-v$.

As $FEK=155-v$, $FED=v+25$.

As $DEFC$ is a cyclic quadrilateral, $DCF=180-DEF$, so $DCF=155-v$.

As $DCF=155-v$, $DCJ=v+25$.

As $ACD=u+52$, $ACJ=283-u-v$.

As $EFK=v$, $EFB=180-v$.

As BFE and BAE stand on the same chord, $BAE=BFE$, so $BAE=180-v$.

As $BAH=180-v$, $ABH=v-48$.

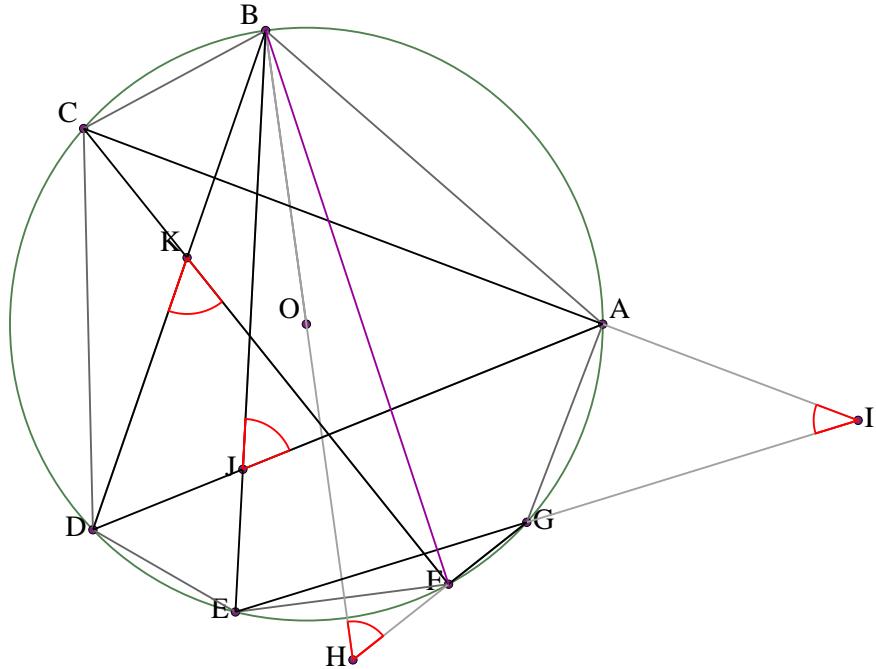
As triangle ABO is isosceles, $AOB=276-2v$.

As AOB is at the center of a circle on the same chord as ACB , $AOB=2ACB$, so $ACB=138-v$.

As $ACJ=283-u-v$, $JCB=145-u$.

As $BCJ=145-u$, $BJC=35$.

Solution to example 177



Let $ABCDEF$ be a cyclic heptagon with center O . Let H be the intersection of FG and BO . Let I be the intersection of GE and AC . Let J be the intersection of EB and DA . Let K be the intersection of BD and CF . Angle $FHB = 60^\circ$. Angle $GIA = 38^\circ$. Angle $DKF = 58^\circ$.

Find angle BJA .

Draw line BF .

Let $AGI = u$.

As $AIG = 38^\circ$, $GAI = 142 - u$.

As $GAI = 142 - u$, $GAC = u + 38^\circ$.

As $CAGF$ is a cyclic quadrilateral, $CFG = 180^\circ - CAG$, so $CFG = 142 - u$.

As $CFG = 142 - u$, $CFH = u + 38^\circ$.

As $DKF = 58^\circ$, $FKB = 122^\circ$.

Let $FBK = v$.

As $BKF = 122^\circ$, $BFK = 58^\circ - v$.

As $CFH = u + 38^\circ$, $HFB = u - v + 96^\circ$.

As $BFH = u - v + 96^\circ$, $FBH = v - u + 24^\circ$.

As $FBO = v - u + 24^\circ$, $OBD = u - 24^\circ$.

As triangle DBO is isosceles, $BOD = 228 - 2u$.

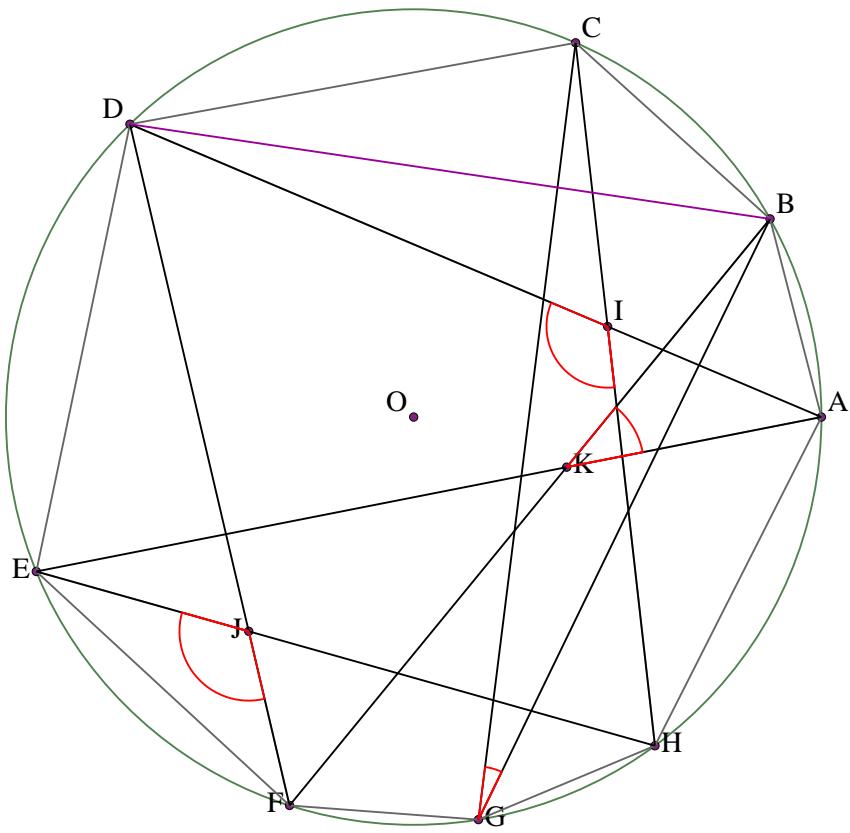
As BOD is at the center of a circle on the same chord as BAD , $BOD = 2BAD$, so $BAD = 114 - u$.

As $AGI = u$, $AGE = 180^\circ - u$.

As $AGEB$ is a cyclic quadrilateral, $ABE = 180^\circ - AGE$, so $ABE = u$.

As $BAJ = 114 - u$, $AJB = 66^\circ$.

Solution to example 179



Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of CH and AD . Let J be the intersection of HE and DF . Let K be the intersection of EA and FB .

Prove that $DIH+EJF = BGC+AKB+180$

Draw line BD .

Let $BGC=x$. Let $DIH=y$. Let $EJF=z$. Let $AKB=w$.

As $EJF=z$, $EJD=180-z$.

Let $DEJ=u$.

As $DJE=180-z$, $EDJ=z-u$.

As BGC and BDC stand on the same chord, $BDC=BGC$, so $BDC=x$.

Let $BAK=v$.

As $BAED$ is a cyclic quadrilateral, $BDE=180-BAE$, so $BDE=180-v$.

As $BDC=x$, $CDE=x-v+180$.

As $EDF=z-u$, $FDC=x+u-z-v+180$.

As $DEHC$ is a cyclic quadrilateral, $DCH=180-DEH$, so $DCH=180-u$.

As $DIH=y$, $DIC=180-y$.

As $DCI=180-u$, $CDI=y+u-180$.

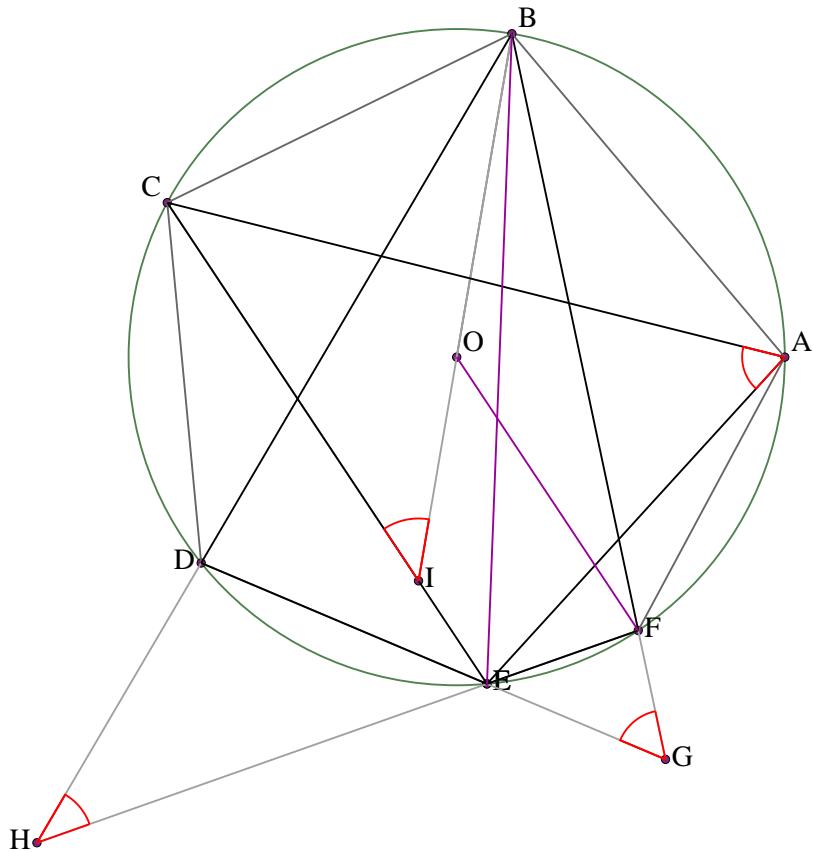
As $AKB=w$, $ABK=180-w-v$.

As ABF and ADF stand on the same chord, $ADF=ABF$, so $ADF=180-w-v$.

As $CDI=y+u-180$, $CDF=y+u-w-v$.

But $CDF=x+u-z-v+180$, so $y+u-w-v=x+u-z-v+180$, or $y+z=x+w+180$, or $DIH+EJF=BGC+AKB+180$.

Solution to example 181



Let ABCDEF be a cyclic hexagon with center O. Let G be the intersection of ED and BF. Let H be the intersection of DB and FE. Let I be the intersection of OB and EC.

Angle EGF = 55°. Angle CAE = 62°. Angle DHE = 40°.

Find angle BIC.

Draw lines BE and FO.

As CAED is a cyclic quadrilateral,
 $CDE = 180 - CAE$, so $CDE = 118$.

Let $EBH = u$.

As DBE and DCE stand on the same chord,
 $DCE = DBE$, so $DCE = u$.

As $CDE = 118$, $CED = 62 - u$.

As $CED = 62 - u$, $CEG = u + 118$.

Let $BEC = v$.

As CAE and CBE stand on the same chord,
 $CBE = CAE$, so $CBE = 62$.

As $BEC = v$, $BCE = 118 - v$.

As BCEF is a cyclic quadrilateral, $BFE = 180 - BCE$,
 $so BFE = v + 62$.

As $BFE = v + 62$, $EFG = 118 - v$.

As $EFG = 118 - v$, $FEG = v + 7$.

As $CEG = u + 118$, $CEF = u - v + 111$.

As CEFB is a cyclic quadrilateral, $CBF = 180 - CEF$,

so $CBF = v - u + 69$.

As $BHE = 40$, $BEH = 140 - u$.

As $BEH = 140 - u$, $BEF = u + 40$.

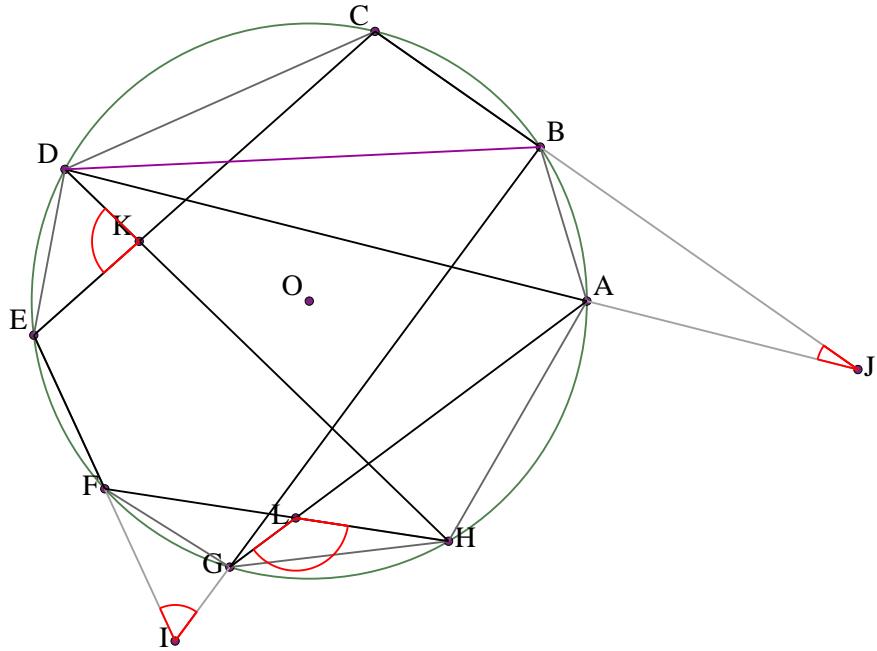
As BOF is at the center of a circle on the same chord as BEF, $BOF = 2BEF$, so $BOF = 2u + 80$.

As triangle BOF is isosceles, $FBO = 50 - u$.

As $CBF = v - u + 69$, $CBO = v + 19$.

As $CBI = v + 19$, $BIC = 43$.

Solution to example 183



Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of GB and EF . Let J be the intersection of BC and DA . Let K be the intersection of CE and HD . Let L be the intersection of FH and AG .

Angle $GIF = 61^\circ$. Angle $EKD = 86^\circ$. Angle $HLG = 135^\circ$.

Find angle BJA .

Draw line BD .

Let $DEK=u$.

As $DKE=86$, $EDK=94-u$.

As $EDHF$ is a cyclic quadrilateral, $EFH=180-EDH$, so $EFH=u+86$.

As $EFH=u+86$, $HFI=94-u$.

Let $GFL=v$.

As $HFI=94-u$, $IFG=94-u-v$.

As $GFI=94-u-v$, $FGI=u+v+25$.

As $FGI=u+v+25$, $FGB=155-u-v$.

As $GLH=135$, $GLF=45$.

As $FLG=45$, $FGL=135-v$.

As $BGF=155-u-v$, $BGA=u-20$.

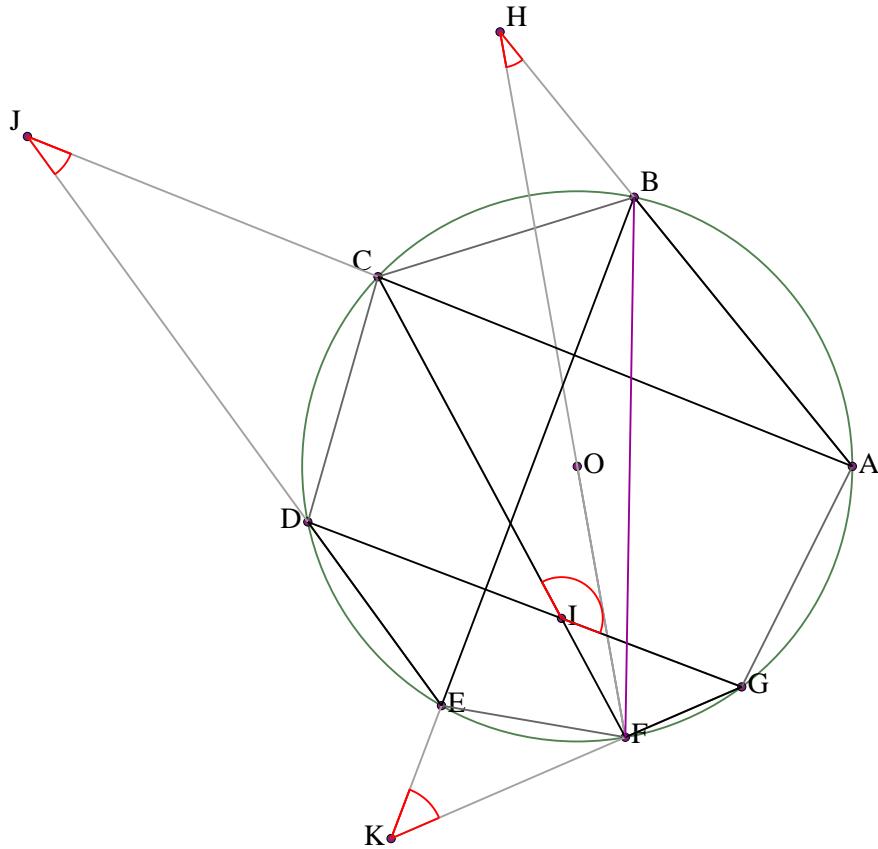
As AGB and ADB stand on the same chord, $ADB=AGB$, so $ADB=u-20$.

As CED and CBD stand on the same chord, $CBD=CED$, so $CBD=u$.

As $CBD=u$, $DBJ=180-u$.

As $BDJ=u-20$, $BJD=20$.

Solution to example 185



Let $ABCDEF$ be a cyclic heptagon with center O . Let H be the intersection of OF and AB . Let I be the intersection of FC and DG . Let J be the intersection of CA and ED . Let K be the intersection of BE and GF . Prove that $BHF + CIG = CJD + EKF + 90^\circ$

Draw line BF .

Let $BHF = x$. Let $CIG = y$. Let $CJD = z$. Let $EKF = w$.

Let $FEK = v$.

As $FEK = v$, $FEB = 180 - v$.

As BEF and BCF stand on the same chord,

$BCF = BEF$, so $BCF = 180 - v$.

As $EKF = w$, $EFK = 180 - w - v$.

As $EFK = 180 - w - v$, $EFG = w + v$.

As $EFGD$ is a cyclic quadrilateral, $EDG = 180 - EFG$,

so $EDG = 180 - w - v$.

As $EDG = 180 - w - v$, $GDJ = w + v$.

As $CIG = y$, $CID = 180 - y$.

Let $DCI = u$.

As $CID = 180 - y$, $CDI = y - u$.

As $GDJ = w + v$, $JDC = w + u + v - y$.

As $CDJ = w + u + v - y$, $DCJ = y - z - w - u - v + 180$.

As $DCJ = y - z - w - u - v + 180$, $DCA = z + w + u + v - y$.

As $ACD = z + w + u + v - y$, $ACF = z + w + v - y$.

As ACF and ABF stand on the same chord,

$ABF = ACF$, so $ABF = z + w + v - y$.

As $ABF = z + w + v - y$, $FBH = y - z - w - v + 180$.

As $FBH = y - z - w - v + 180$, $BFH = z + w + v - x - y$.

As triangle BFO is isosceles,

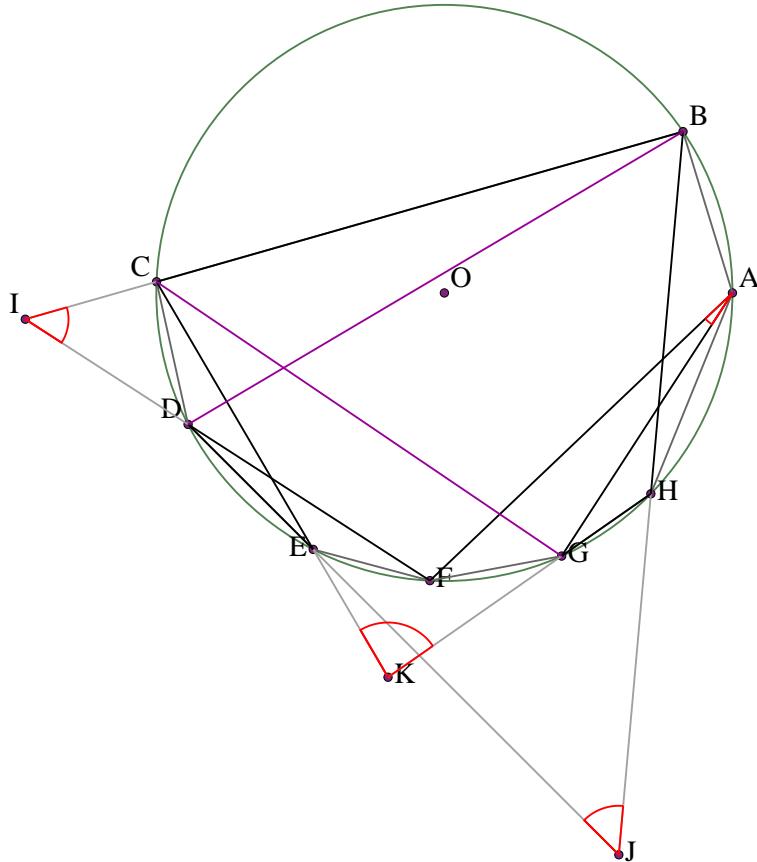
$BOF = 2x + 2y - 2z - 2w - 2v + 180$.

As BOF is at the center of a circle on the same chord as BCF , $BOF = 2BCF$, so

$BCF = x + y - z - w - v + 90$.

But $BCF = 180 - v$, so $x + y - z - w - v + 90 = 180 - v$, or $x + y = z + w + 90$, or $BHF + CIG = CJD + EKF + 90$.

Solution to example 187



Let $ABCDEFHG$ be a cyclic octagon with center O . Let I be the intersection of FD and CB . Let J be the intersection of DE and BH . Let K be the intersection of EC and HG .

Angle $GAF = x$. Angle $EKG = y$. Angle $DIC = z$.

Find angle EJH .

Draw lines BD and CG .

Let $GCK = v$.

As $CKG = y$, $CGK = 180 - y - v$.

As $CGK = 180 - y - v$, $CGH = y + v$.

As $CGHB$ is a cyclic quadrilateral, $CBH = 180 - CGH$, so $CBH = 180 - y - v$.

Let $BDJ = u$.

As BDE and BCE stand on the same chord, $BCE = BDE$, so $BCE = u$.

As $ECG = v$, $GCB = u - v$.

As $BCGA$ is a cyclic quadrilateral, $BAG = 180 - BCG$, so $BAG = v - u + 180$.

As $BAG = v - u + 180$, $BAF = v - x - u + 180$.

As $BAFD$ is a cyclic quadrilateral, $BDF = 180 - BAF$, so $BDF = x + u - v$.

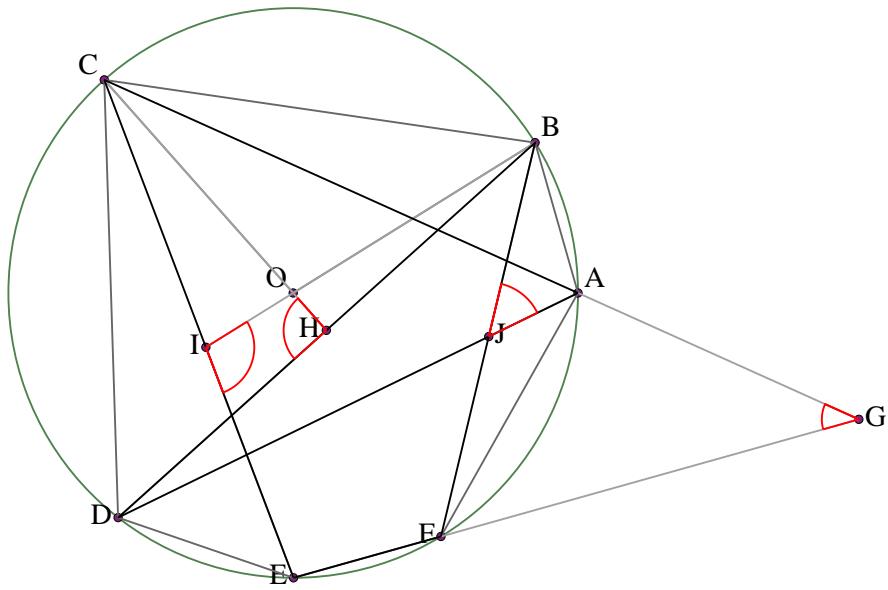
As $BDF = x + u - v$, $BDI = v - x - u + 180$.

As $BDI = v - x - u + 180$, $DBI = x + u - z - v$.

As $IBJ = 180 - y - v$, $JBH = z - x - y - u + 180$.

As $DBJ = z - x - y - u + 180$, $BJD = x + y - z$.

Solution to example 189



Let ABCDEF be a cyclic hexagon with center O. Let G be the intersection of AC and EF. Let H be the intersection of OC and BD. Let I be the intersection of CE and BO. Let J be the intersection of FB and DA.

Angle AGF = x. Angle EIB = y. Angle BJA = z.

Find angle CHD.

As $BIE = y$, $BIC = 180 - y$.

Let $BCI = u$.

As $BIC = 180 - y$, $CBI = y - u$.

As triangle CBO is isosceles, $BOC = 2u - 2y + 180$.

As BOC is at the center of a circle on the same chord as BDC, $BOC = 2BDC$, so $BDC = u - y + 90$.

As triangle CBO is isosceles, $BCO = y - u$.

As $AJB = z$, $AJF = 180 - z$.

Let $AFJ = v$.

As $AJF = 180 - z$, $FAJ = z - v$.

As BCEF is a cyclic quadrilateral, $BFE = 180 - BCE$, so $BFE = 180 - u$.

As $AFB = v$, $AFE = v - u + 180$.

As $AFE = v - u + 180$, $AFG = u - v$.

As $AFG = u - v$, $FAG = v - x - u + 180$.

As $DAF = z - v$, $DAG = z - x - u + 180$.

As $DAG = z - x - u + 180$, $DAC = x + u - z$.

As CAD and CBD stand on the same chord,

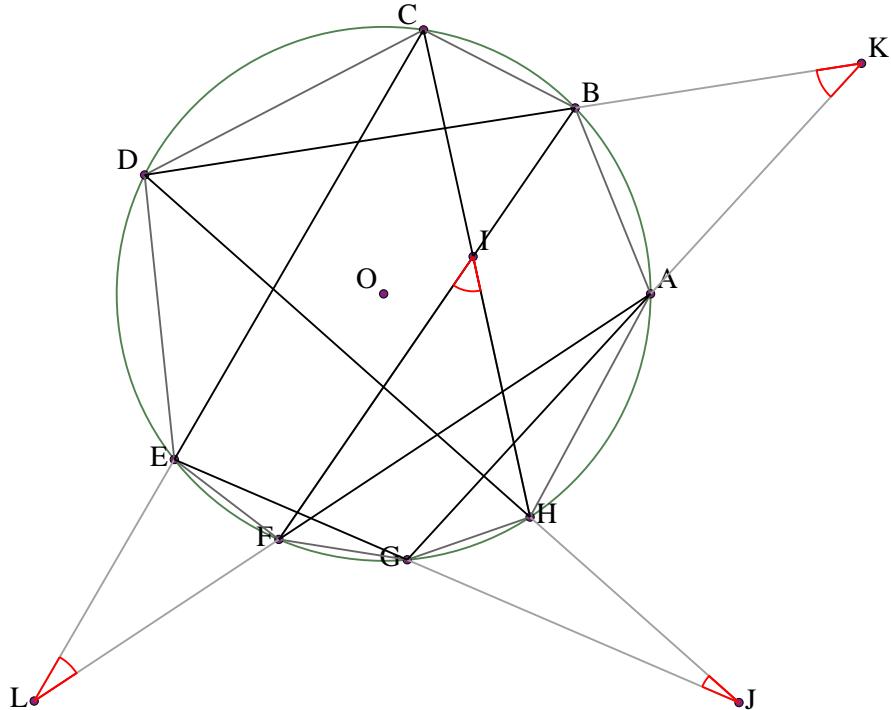
$CBD = CAD$, so $CBD = x + u - z$.

As $BDC = u - y + 90$, $BCD = y + z - x - 2u + 90$.

As $BCH = y - u$, $HCD = z - x - u + 90$.

As $CDH = u - y + 90$, $CHD = x + y - z$.

Solution to example 191



Let $ABCDEFHG$ be a cyclic octagon with center O . Let I be the intersection of CH and BF . Let J be the intersection of HD and GE . Let K be the intersection of DB and AG . Let L be the intersection of FA and EC .

Angle $HIF = x$. Angle $HJG = y$. Angle $BKA = z$.

Find angle FLE .

Let $EFL=r$.

As $EFL=r$, $EFA=180-r$.

As AFE and AGE stand on the same chord,

$AGE=AFE$, so $AGE=180-r$.

Let $GHJ=u$.

As $GJH=y$, $HGJ=180-y-u$.

As $HGJ=180-y-u$, $HGE=y+u$.

As $AGE=180-r$, $AGH=y+u+r-180$.

As $GHJ=u$, $GHD=180-u$.

Let $ABK=v$.

As $ABK=v$, $ABD=180-v$.

As $ABDH$ is a cyclic quadrilateral,

$AHD=180-ABD$, so $AHD=v$.

As $DHG=180-u$, $GHA=v-u+180$.

As $AGH=y+u+r-180$, $GAH=180-y-v-r$.

As $AKB=z$, $BAK=180-z-v$.

As $BAK=180-z-v$, $BAG=z+v$.

As $GAH=180-y-v-r$, $HAB=z-y-r+180$.

As $BAHC$ is a cyclic quadrilateral,

$BCH=180-BAH$, so $BCH=y+r-z$.

As $FIH=x$, $FIC=180-x$.

As $CIF=180-x$, $CIB=x$.

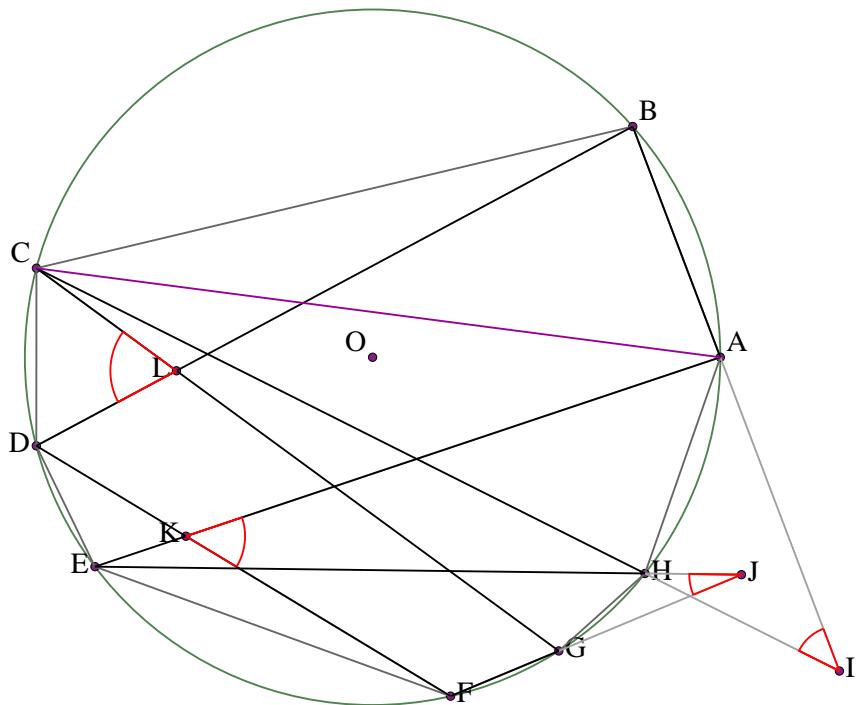
As $BCI=y+r-z$, $CBI=z-x-y-r+180$.

As $CBFE$ is a cyclic quadrilateral, $CEF=180-CBF$, so $CEF=x+y+r-z$.

As $CEF=x+y+r-z$, $FEL=z-x-y-r+180$.

As $FEL=z-x-y-r+180$, $ELF=x+y-z$.

Solution to example 193



Let $ABCDEFHG$ be a cyclic octagon with center O . Let I be the intersection of CH and AB . Let J be the intersection of HE and FG . Let K be the intersection of EA and DF . Let L be the intersection of BD and GC . Prove that $AIH+GJH+AKF+CLD = 180$

Draw line AC .

Let $AIH=x$. Let $GJH=y$. Let $AKF=z$. Let $CLD=w$.

Let $GHJ=u$.

As $GHJ=u$, $GHE=180-u$.

As $EHGF$ is a cyclic quadrilateral, $EFG=180-EHG$, so $EFG=u$.

As $AKF=z$, $FKE=180-z$.

Let $FEK=v$.

As $EKF=180-z$, $EFK=z-v$.

As $EFG=u$, $GFK=u+v-z$.

As $DFGC$ is a cyclic quadrilateral,

$DCG=180-DFG$, so $DCG=z-u-v+180$.

As $DCL=z-u-v+180$, $CDL=u+v-z-w$.

As $GJH=y$, $HGJ=180-y-u$.

As $HGJ=180-y-u$, $HGF=y+u$.

As $FGHE$ is a cyclic quadrilateral, $FEH=180-FGH$, so $FEH=180-y-u$.

As $FEH=180-y-u$, $HEA=y+u+v-180$.

As AEH and ACH stand on the same chord,

$ACH=AEH$, so $ACH=y+u+v-180$.

As $ACI=y+u+v-180$, $CAI=360-x-y-u-v$.

As $CAI=360-x-y-u-v$, $CAB=x+y+u+v-180$.

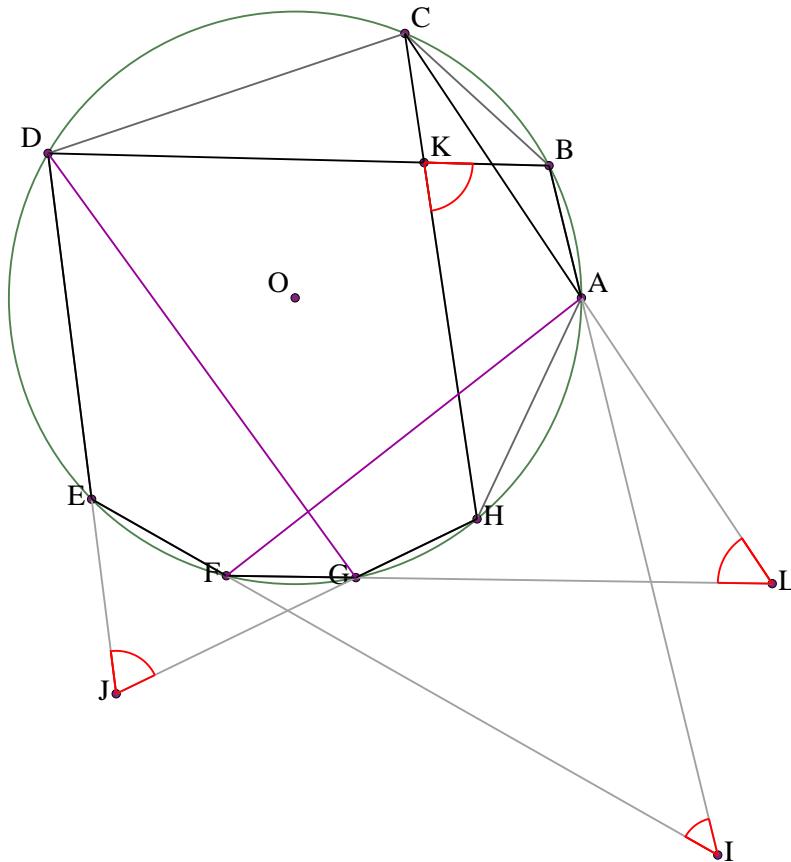
As BAC and BDC stand on the same chord,

$BDC=BAC$, so $BDC=x+y+u+v-180$.

But $BDC=u+v-z-w$, so $x+y+u+v-180=u+v-z-w$, or

$x+y+z+w=180$, or $AIH+GJH+AKF+CLD=180$.

Solution to example 195



Let $ABCDEFGH$ be a cyclic octagon with center O . Let I be the intersection of FE and BA . Let J be the intersection of ED and HG . Let K be the intersection of DB and CH . Let L be the intersection of AC and GF .

Angle $EJG = 71^\circ$. Angle $ALG = 55^\circ$. Angle $FIA = 47^\circ$.

Find angle BKH .

Draw lines DG and AF .

As $DCK=101-u$, $CKD=79$.

Let $FAL=v$.

As $CKD=79$, $CKB=101$.

As $ALF=55$, $AFL=125-v$.

As $BKC=101$, $BKH=79$.

As $FAL=v$, $FAC=180-v$.

Let $CDK=u$.

As BDC and BAC stand on the same chord,

$BAC=BDC$, so $BAC=u$.

As $CAF=180-v$, $FAB=u-v+180$.

As $BAF=u-v+180$, $FAI=v-u$.

As $FAI=v-u$, $AFI=u-v+133$.

As $AFG=125-v$, $GFI=u+8$.

As $GFI=u+8$, $GFE=172-u$.

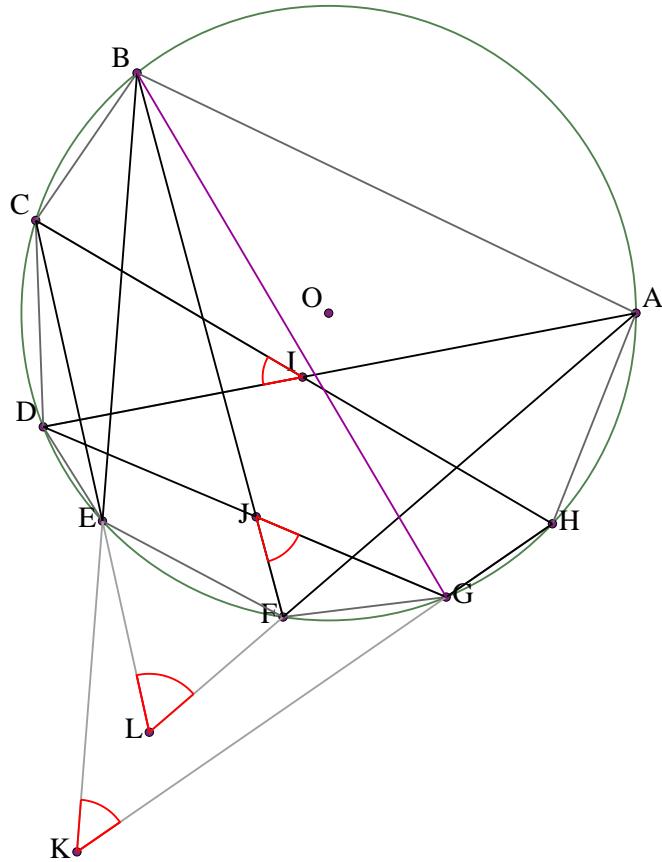
As $EFGD$ is a cyclic quadrilateral, $EDG=180-EFG$,
so $EDG=u+8$.

As $GDJ=u+8$, $DGJ=101-u$.

As $DGJ=101-u$, $DGH=u+79$.

As $DGHC$ is a cyclic quadrilateral,
 $DCH=180-DGH$, so $DCH=101-u$.

Solution to example 197



Let $ABCDEFHG$ be a cyclic octagon with center O . Let I be the intersection of AD and HC . Let J be the intersection of DG and BF . Let K be the intersection of GH and EB . Let L be the intersection of CE and FA . Prove that $CID+ELF = FJG+EKG$

Draw line BG .

Let $CID=x$. Let $FJG=y$. Let $EKG=z$. Let $ELF=w$.

Let $BKG=v$.

As $BKG=z$, $GBK=180-z-v$.

As EBG and EDG stand on the same chord, $EDG=EBG$, so $EDG=180-z-v$.

Let $FEL=r$.

As $FEL=r$, $FEC=180-r$.

As $CEFB$ is a cyclic quadrilateral, $CBF=180-CEF$, so $CBF=r$.

As $FJG=y$, $GJB=180-y$.

Let $BGJ=u$.

As $BJG=180-y$, $GBJ=y-u$.

As $CBJ=r$, $CBG=y+r-u$.

As $CBGD$ is a cyclic quadrilateral,

$CDG=180-CBG$, so $CDG=u-y-r+180$.

As $EDG=180-z-v$, $EDC=u-y-z-v-r+360$.

As $ELF=w$, $EFL=180-w-r$.

As $EFL=180-w-r$, $EFA=w+r$.

As $AFED$ is a cyclic quadrilateral, $ADE=180-AFE$, so $ADE=180-w-r$.

As $BGK=v$, $BGH=180-v$.

As $BDG=u$, $DGH=u-v+180$.

As $DGHC$ is a cyclic quadrilateral, $DCH=180-DGH$, so $DCH=v-u$.

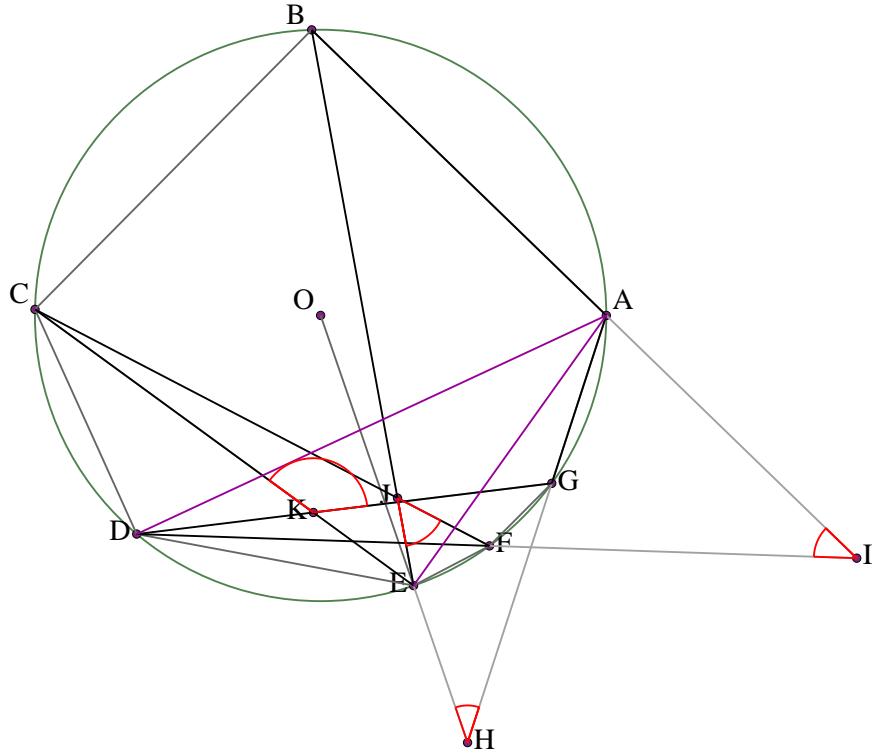
As $DCI=v-u$, $CDI=u-x-v+180$.

As $EDI=180-w-r$, $EDC=u-x-w-v-r+360$.

But $CDE=u-y-z-v-r+360$, so

$u-x-w-v-r+360=u-y-z-v-r+360$, or $y+z=x+w$, or $FJG+EKG=CID+ELF$.

Solution to example 199



Let $ABCDEF$ be a cyclic heptagon with center O . Let H be the intersection of GA and EO . Let I be the intersection of AB and FD . Let J be the intersection of BE and CF . Let K be the intersection of EC and DG . Prove that $AIF+CKG = EHG+EJF+90$

Draw lines AE and AD .

Let $EHG=x$. Let $AIF=y$. Let $EJF=z$. Let $CKG=w$.

Let $CEJ=u$.

Let $DEK=v$.

As $BEC=u$, $BED=u+v$.

As BED and BAD stand on the same chord, $BAD=BED$, so $BAD=u+v$.

As $BAD=u+v$, $DAI=180-u-v$.

As $DAI=180-u-v$, $ADI=u+v-y$.

As $EJF=z$, $EJC=180-z$.

As $CJE=180-z$, $ECJ=z-u$.

As ECF and EDF stand on the same chord, $EDF=ECF$, so $EDF=z-u$.

As $ADI=u+v-y$, $ADE=z+v-y$.

As ADE and ABE stand on the same chord, $ABE=ADE$, so $ABE=z+v-y$.

As $CKG=w$, $GKE=180-w$.

As $EKG=180-w$, $EKD=w$.

As $DKE=w$, $EDK=180-w-v$.

As EDG and EAG stand on the same chord, $EAG=EDG$, so $EAG=180-w-v$.

As $EAH=180-w-v$, $AEH=w+v-x$.

As $AEH=w+v-x$, $AE0=x-w-v+180$.

As triangle AEO is isosceles, $AOE=2w+2v-2x-180$.

As AOE is at the center of a circle on the same chord as ABE , $AOE=2ABE$, so $ABE=w+v-x-90$.

But $ABE=z+v-y$, so $w+v-x-90=z+v-y$, or

$y+w=x+z+90$, or $AIF+CKG=EHG+EJF+90$.